Behavior of Machine Learning Algorithms in
Adversarial Environments

Blaine Nelson

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-140
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-140.html

November 23, 2010

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
23 NOV 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Behavior of Machine Learning Algorithmsin Adversarial Environments | o\ n\UMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Electrical Engineering and REPORT NUMBER
Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Machine lear ning has become a prevalent tool in many computing applications and moder n enterprise
systems stand to greatly benefit from learning algorithms. However, one concern with learning algorithms
isthat they may introduce a security fault into the system. The key strengths of lear ning approaches are
their adaptability and ability to infer patternsthat can be used for predictionsor decision making.
However, these assets of learning can potentially be subverted by adversarial manipulation of the learner?s
environment, which exposes applications that use machine lear ning techniquesto a new class of security
vulnerabilities. | analyze the behavior of learning systemsin adversarial environments. My thesisisthat
learning algorithms are vulnerable to attacks that can transform the learner into aliability for the system
they areintended to aid, but by critically analyzing potential security threatsthe extent of these threat can
be assessed, proper learning techniques can be selected to minimize the adver sary?simpact, and failures of
system can be averted. | present a systematic approach for identifying and analyzing threats against a
machine learning system. | examinereal-world learning systems, assess their vulner abilities, demonstrate
real-world attacks against their learning mechanism, and propose defenses that can successful mitigate the
effectiveness of such attacks. In doing so, | provide machine lear ning practitionerswith a systematic
methodology for assessing a lear ner ?s vulner ability and developing defensesto strengthen their system
against such threats. Additionally, | also examine and answer theor etical questions about the limits of
adversarial contamination and classifier evasion.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 244

unclassified unclassified unclassified Report (SAR)

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Behavior of Machine Learning Algorithms in Adversarial Environments

by

Blaine Alan Nelson

A dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Anthony D. Joseph, Chair
Professor J. D. Tygar
Professor Peter L. Bartlett
Professor Terry Speed

Fall 2010

Behavior of Machine Learning Algorithms in Adversarial Environments

Copyright (©) 2010
by

Blaine Alan Nelson

Abstract

Behavior of Machine Learning Algorithms in Adversarial Environments
by

Blaine Alan Nelson

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Anthony D. Joseph, Chair

Machine learning has become a prevalent tool in many computing applications and modern
enterprise systems stand to greatly benefit from learning algorithms. However, one concern
with learning algorithms is that they may introduce a security fault into the system. The
key strengths of learning approaches are their adaptability and ability to infer patterns that
can be used for predictions or decision making. However, these assets of learning can poten-
tially be subverted by adversarial manipulation of the learner’s environment, which exposes
applications that use machine learning techniques to a new class of security vulnerabilities.

I analyze the behavior of learning systems in adversarial environments. My thesis is that
learning algorithms are vulnerable to attacks that can transform the learner into a liability
for the system they are intended to aid, but by critically analyzing potential security threats,
the extent of these threat can be assessed, proper learning techniques can be selected to
minimize the adversary’s impact, and failures of system can be averted.

I present a systematic approach for identifying and analyzing threats against a machine
learning system. I examine real-world learning systems, assess their vulnerabilities, demon-
strate real-world attacks against their learning mechanism, and propose defenses that can
successful mitigate the effectiveness of such attacks. In doing so, I provide machine learn-
ing practitioners with a systematic methodology for assessing a learner’s vulnerability and
developing defenses to strengthen their system against such threats. Additionally, I also
examine and answer theoretical questions about the limits of adversarial contamination and
classifier evasion.

Contents

Contents

List of Figures

List of Tables

Acknowledgments

1 Introduction

1.1
1.2
1.3
1.4

Motivation and Methodology Lo oL
Guidelines from Computer Security
Historical Roadmap
Dissertation Organization

2 Background and Notation

2.1
2.2

Notation and Terminology
Statistical Machine Learning

3 A Framework for Secure Learning

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Analyzing Phases of Learning
Security Analysis L.
Framework L
Exploratory Attacks Lo
Causative Attacks
Repeated Learning Games
Dissertation Organization

I Protecting against False Positives and False Negatives in Causative
Attacks: Two Case Studies of Availability and Integrity Attacks

4 Availability Attack Case Study: SpamBayes

4.1
4.2
4.3
4.4
4.5
4.6

The SpamBayes Spam Filter
Threat Model for SpamBayes
Causative Attacks against SpamBayes’ Learner
The Reject On Negative Impact (RONI) defense
Experiments with SpamBayes o000
Summary . o.o. ... e e

5 Integrity Attack Case Study: PCA Detector

iii

ix

xi

—
o O 00 N =

—_

21
25

33
34
35
37
41
49
55
o8

59

61
62
68
71
75
76
89

93

5.1 PCA Method for Detecting Traffic Anomalies 96

5.2 Corrupting the PCA subspace 98
5.3 Corruption-Resilient Detectors 103
5.4 Empirical Evaluation o o o 107
BB SUMMATY . . . o o e e e 122

II Partial Reverse-Engineering of Classifiers through Near-Optimal

Evasion 125
6 Near-Optimal Evasion of Classifiers 127
6.1 Characterizing Near-Optimal Evasion 129
6.2 Evasion of Convex Classes for £1 Costs o v o v v v v . 136
6.3 Evasion for General ¢, Costs 148
6.4 Summary and Future Work L. 154
7 Conclusion 161
7.1 Discussion and Open Problems, 164
7.2 Review of Open Problems 171
7.3 Concluding Remarks s 172
List of Symbols 174
Glossary 178
Bibliography 196
IIT Appendices 197
A Background 199
A.1 Covering Hyperspheres 199
A.2 Covering Hypercubes 203
B Analysis of SpamBayes 207
B.1 SpamBayes’ I(-) Message Score 207
B.2 Constructing Optimal Attacks on SpamBayes 208
C Proofs for Near-Optimal Evasion 217
C.1 Proof of K-sSTEP MULTILINESEARCH Theorem 217
C.2 Proofof Lower Bounds 219
C.3 Proof of Theorem 6.9. e 221

C.4 Proof of Theorem 6.10 e, 224

ii

List of Figures

1.1

1.2

2.1

3.1
3.2

Diagrams of the virus detection system architecture described in Martin
[2005], Sewani [2005], Nelson [2005]. (a) The system was designed as an
extrusion detector. Messages sent from local hosts are routed to our detec-
tor by the mail server for analysis—benign messages are subsequently sent
whereas those identified as viral are quarantined for review by an administra-
tor. (b) Within the detector, messages pass through a classification pipeline.
After the message is vectorized, it is first analyzed by a one-class SVM novelty
detector. Messages flagged as ‘suspicious’ are then re-classified by a per-user
naive Bayes classifier. Finally, if the message is labeled as ‘viral’ a throttling
module is used to determine when a host should be quarantined.
Depictions of the concept of hypersphere outlier detection and the vulnera-
bility of naive approaches. (a) A bounding hypersphere centered at Xmean
of fixed radius R is used to encapsulate the empirical support of a distribu-
tion by excluding outliers beyond its boundary. Samples from the ‘normal’
distribution are indicated by *’s with three outliers on the exterior of the
hypersphere. (b) How an attacker with knowledge about the state of the
outlier detector can shift the outlier detector toward the goal x4. It will
take several iterations of attacks to sufficiently shift the hypersphere before
it encompasses x? and classifies it as benign.

Diagrams depicting the flow of information through different phases of learn-
ing. (a) All major phases of the learning algorithm except for model selection.
Here objects drawn from Pz are parsed into measurements which then are
used in the feature selector F'S. It selects a feature mapping ¢ which is used
to create training and evaluation datasets, D(tr2in) and D(eva) The learn-
ing algorithm H®) selects a hypothesis f based on the training data and
its predictions are assessed on D) according to the loss function L. (b)
The training and prediction phases of learning with implicit data collection
phases. These learning phases are the focus of this dissertation.

Diagram of an Exploratory attack against a learning system (see Figure 2.1).

Diagram of a Causative attack against a learning system (see Figure 2.1).

iii

12

17

26

41
50

4.1

4.2

4.3

44

4.5

4.6

Probabilistic graphical models for spam detection. (a) A probabilistic model
that depicts the dependency structure between random variables in Spam-
Bayes for a single token (SpamBayes models each token as a separate indi-
cator of ham/spam and then combines them together assuming each is an
independent test). In this model, the label y; for the i*? email depends on the
token score g; for the 4 token if it occurs in the message; i.e., X;,; = 1. The
parameters s and x parameterize a beta prior on ¢;. (b) A more traditional
generative model for spam. The parameters (%), o, and § parameterize the
prior distributions for y; and ¢;. Each label y; for the ith email is drawn
independently from a Bernoulli distribution with 7(*)as the probability of
spam. Each token score for the j* token is drawn independently from a beta
distribution with parameters a and . Finally, given the label for a message
and the token scores, X; ; is drawn independently from a Bernoulli. Based
on the likelihood function for this model, the token scores g; computed by
SpamBayes can be viewed simply as the maximum likelihood estimators for
the corresponding parameter in the model.
Effect of three dictionary attacks on SpamBayes in two settings. Figure (a)
and (b) have an initial training set of 10,000 messages (50% spam) while
Figure (c) and (d) have an initial training set of 2,000 messages (75% spam).
Figure (b) and (d) also depict the standard errors in the experiments for both
of the settings. I plot percent of ham classified as spam (dashed lines) and
as spam or unsure (solid lines) against the attack as percent of the training
set. I show the optimal attack (A), the Usenet-90k dictionary attack (O),
the Usenet-25k dictionary attack (OJ), and the Aspell dictionary attack (O).
Each attack renders the filter unusable with adversarial control over as little
as 1% of the messages (101 messages).
Effect of the focused attack as a function of the percentage of target tokens
known by the attacker. Each bar depicts the fraction of target emails clas-
sified as spam, ham, and unsure after the attack. The initial inbox contains
10,000 emails (50% spam).
Effect of the focused attack as a function of the number of attack emails
with a fixed fraction (F'=0.5) of tokens known by the attacker. The dashed
line shows the percentage of target ham messages classified as spam after the
attack, and the solid line the percentage of targets that are spam or unsure
after the attack. The initial inbox contains 10,000 emails (50% spam).

Effect of the focused attack on three representative emails—one graph for
each target. Each point is a token in the email. The z-axis is the token’s spam
score in Equation (4.2) before the attack (0 indicates ham and 1 indicates
spam). The y-axis is the token’s spam score after the attack. The x’s are
tokens that were included in the attack and the O’s are tokens that were not
in the attack. The histograms show the distribution of spam scores before
the attack (at bottom) and after the attack (at right).
Effect of the pseudospam attack when trained as ham as a function of the
number of attack emails. The dashed line shows the percentage of the ad-
versary’s messages classified as ham after the attack, and the solid line the
percentage that are ham or unsure after the attack. The initial inbox contains
10,000 emails (50% spam).

v

66

80

81

82

84

4.7

4.8

5.1

5.2

5.3

Effect of the pseudospam attack when trained as spam, as a function of
the number of attack emails. The dashed line shows the percentage of the
normal spam messages classified as ham after the attack, and the solid line
the percentage that are unsure after the attack. Surprisingly, training the
attack emails as ham causes an increase in misclassification of normal spam
messages. The initial inbox contains 10,000 emails (50% spam).
Real email messages that are suspiciously similar to dictionary or focused
attacks. Messages (a), (b), and (c) all contain many unique rare words and
training on these messages would probably make these words into spam to-
kens. As with the other three emails, message (d) contains no spam payload,
but has fewer rare words and more repeated words. Perhaps repetition of
words is used to circumvent rules that filter messages with too many unique

words (e.g., the UNIQUE_WORDS rule of SpamAssassin).

Depictions of network topologies, which subspace-based detection methods
can be used as traffic anomaly monitors. (a) A simple four-node network
with four edges. Each node represents a PoP and each edge represents a
bidirectional link between two PoPs. Ingress links are shown at node D al-
though all nodes have ingress links which carry traffic from clients to the PoP.
Similarly, egress links are shown at node B carrying traffic from the PoP to
its destination client. Finally, a flow from D to B is depicted flowing through
C; this is the route taken by traffic sent from PoP D to PoP B. (b) The Abi-
lene backbone network overlaid on a map of the United States representing
the 12 PoP nodes in the network and the 15 links between them. PoPs AM5
and A are actually co-located together in Atlanta but the former is displayed
south-east to highlight its connectivity.
In these figures, the Abilene data was projected into the 2D space spanned
by the 1% principal component and the direction of the attack flow #118.
(a) The 1° principal component learned by PCA and PCA-GRID on clean
data (represented by small gray dots). (b) The effect on the 15 principal
components of PCA and PCA-GRID is shown under a globally informed
attack (represented by o’s). Note that some contaminated points were too
far from the main cloud of data to include in the plot.
A comparison of the Q-statistic and the Laplace threshold for choosing an
anomalous cutoff threshold for the residuals from an estimated subspace. (a)
Histograms of the residuals for the original PCA algorithm and (b) of the
PCA-GRID algorithm (the largest residual is excluded as an outlier). Red
and blue vertical lines demarcate the threshold selected using the @-statistic
and the Laplace threshold, respectively. For the original PCA method, both
methods choose nearly the same reasonable threshold to the right of the ma-
jority of the residuals. However, for the residuals of the PCA-GRID subspace,
the Laplace threshold is reasonable whereas the ()-statistic is not; it would
misclassify too much of the normal data to be an acceptable choice.

86

91

97

103

108

5.4

5.5

5.6

5.7

Comparison of the original PCA subspace and PCA-GRID subspace in terms
of their residual rates. Shown here are box plots of the 24 weekly residual
rates for each flow to demonstrate the variation in residual rate for the two
methods. (a) Distribution of the per-flow residual rates for the original PCA
method and (b) for PCA-GRID. For PCA, flows 32 and 87 (the flows con-
necting Chicago and Los Angeles in Figure 5.1(b)) have consistently low resid-
ual rates making PCA susceptible to evasion along these flows. Both methods
also have a moderate susceptibility along flow 144 (the ingress/egress link for
Washington). Otherwise, PCA-GRID has overall high residual rates along
all flows indicating little vulnerability to evasion.
Effect of Single-Training Period poisoning attacks on the original PCA-based
detector. (a) Evasion success of PCA versus relative chaff volume under
Single-Training Period poisoning attacks using three chaff methods: unin-
formed (dotted black line) locally-informed (dashed blue line) and globally-
informed (solid red line). (b). Comparison of the ROC curves of PCA for
different volumes of chaff (using Add-More-If-Bigger chaff). Also depicted
are the points on the ROC curves selected by the Q-statistic and Laplace
threshold, respectively.
Effect of Single-Training Period poisoning attacks on the ANTIDOTE detec-
tor. (a) Evasion success of ANTIDOTE versus relative chaff volume under
Single-Training Period poisoning attacks using three chaff methods: unin-
formed (dotted black line) locally-informed (dashed blue line) and globally-
informed (solid red line). (b) Comparison of the ROC curves of ANTIDOTE
and the original PCA detector when unpoisoned and under 10% chaff (using
Add-More-If-Bigger chaff). The PCA detector and ANTIDOTE detector have
similar performance when unpoisoned but PCA’s ROC curve is significantly
degraded with chaff whereas ANTIDOTE’s is only slightly affected.
Comparison of the original PCA detector in terms of the area under their
(ROC) curves (AUCSs). (a) The AUC for the PCA detector and the ANTI-
DOTE detector under 10% Add-More-If-Bigger chaff for each of the 144 target
flows. Each point in this scatter plot is a single target flow; its x-coordinate
is the AUC of PCA and its y-coordinate is the AUC of ANTIDOTE. Points
above the line y = x represent flows where ANTIDOTE has a better AUC
than the PCA detector and those below y = x represent flows for which
PCA outperforms ANTIDOTE. The mean AUC for both methods is the red
point. (b) The mean AUC of each detector versus the mean chaff level of
an Add-More-If-Bigger poisoning attack for increasing levels of relative chaff.
The methods compared are a random detector (dotted black line), the PCA
detector (solid red line), and ANTIDOTE (dashed blue line).

vi

111

113

115

5.8

5.9

6.1

6.2

Effect of Boiling Frog poisoning attacks on the original PCA-subspace de-
tector (see Figure 5.9 for comparison with the PCA-based detector). (a)
Evasion success of PCA under Boiling Frog poisoning attacks in terms of
the average FNR after each successive week of poisoning for four different
poisoning schedules (i.e., a weekly geometric increase in the size of the poi-
soning by factors 1.01, 1.02, 1.05, and 1.15 respectively). More aggressive
schedules (e.g., growth rates of 1.05 and 1.15) significantly increase the FNR
within a few weeks while less aggressive schedules take many weeks to achieve
the same result but are more stealthy in doing so. (b) Weekly chaff rejec-
tion rates by the PCA-based detector for the Boiling Frog poisoning attacks
from Figure (a). The detector only detects a significant amount of the chaff
during the first weeks of the most aggressive schedule (growth rate of 1.15);

subsequently, the detector is too contaminated to accurately detect the chaff. 119

Effect of Boiling Frog poisoning attacks on the ANTIDOTE detector (see Fig-
ure 5.8 for comparison with the PCA-based detector). (a) Evasion success
of ANTIDOTE under Boiling Frog poisoning attacks in terms of the aver-
age FNR after each successive week of poisoning for four different poisoning
schedules (i.e., a weekly geometric increase in the size of the poisoning by
factors 1.01, 1.02, 1.05, and 1.15 respectively). Unlike the weekly FNRs for
the Boiling Frog poisoning in Figure 5.8(a), the more aggressive schedules
(e.g., growth rates of 1.05 and 1.15) reach their peak FNR after only a few
weeks of poisoning after which their effect declines (as the detector success-
fully rejects increasing amounts of chaff). The less aggressive schedules (with
growth rates of 1.01 and 1.02) still have gradually increasing FNRs, but also
seem to eventually plateau. (b) Weekly chaff rejection rates by the ANTI-
DOTE detector for the Boiling Frog poisoning attacks from Figure (a). Unlike
PCA (see Figure 5.8(b)), ANTIDOTE rejects increasingly more chaff from the
Boiling Frog attack. For all poisoning schedules, ANTIDOTE has a higher
baseline rejection rate (around 10%) than the PCA detector (around 5%)
and it rejects most of the chaff from aggressive schedules within a few weeks.
This suggests that, unlike PCA, ANTIDOTE is not progressively poisoned by
increasing week-to-week chaff volumes.

Geometry of convex sets and ¢; balls. (a) If the positive set X f+ is convex,

finding an ¢; ball contained within X’ establishes a lower bound on the cost,
otherwise at least one of the ¢; ball’s corners witnesses an upper bound. (b)
If the negative set Xf_ is convex, the adversary can establish upper and lower
bounds on the cost by determining whether or not an ¢; ball intersects with
Xff, but this intersection need not include any corner of the ball.
The geometry of search. (a) Weighted ¢; balls are centered around the
target x* and have 2 - D vertices; (b) Search directions in multi-line search
radiate from x* to probe specific costs; (c) In general, the adversary leverages
convexity of the cost function when searching to evade. By probing all search
directions at a specific cost, the convex hull of the positive queries bounds
the ¢ cost ball contained withinit.

vii

121

136

6.3

Al

B.1

B.2

Convex hull for a set of queries and the resulting bounding balls for several
¢, costs. Each row represents a unique set of positive (red '+' points) and
negative (green '—' points) queries and each column shows the implied upper
bound (in green) and lower bound (in blue) for a different ¢, cost. In the
first row, the body is defined by a random set of 7 queries, in the second,
the queries are along the coordinate axes, and in the third, the queries are
around a circle. L

This figure shows various depictions of spherical caps. (a) A depiction of a
spherical cap of height h that is created by a halfspace that passes through the
sphere. The green region represents the area of the cap. (b) The geometry
of the spherical cap; the intersecting halfspace forms a right triangle with the
centroid of the hypersphere. The length of the side of this triangle adjacent
to the centroid is R — h, its hypotenuse has length R, and the side opposite
the centroid has length \/h(2R — h). The half angle ¢ given by sin (¢) =
NerEn
R

Plot of the aggregation statistic sq (-) relative to a single token score ¢;; on
the z-axis is ¢; and on the y-axis is sq (-). Here I consider a scenario where
7-0.14 and without the i*! token sq (% \ {i}) = 0.2. The red dotted line is
the value of § (%), the blue dotted line is the value of ¢; [[, ,; ¢; (i-e., 5q (X)
without including d (X)), and the blue solid line is the value of sq (%) as ¢;
VATIES. . . v o e e e e e e e e e e e e
The effect of the & (-) function on I(-) as the score of the i*? token, ¢;, increases
causing ¢; to move into or out of the region (0.4,0.6) where all tokens are
ignored. In each plot, the z-axis is the value of ¢; before it’s removal and the
y-axis is the change in I(-) due to the removal; note that the scale on the
y-axis decreases from top to bottom. For the top-most row of plots there is 1
unchanged token scores in addition to the changing one, for the middle row
there are 3 additional unchanged token scores, and for the bottom row there
are 5 additional unchanged token scores. The plots in the left-most column
demonstrate the effect of removing the i token when initially ¢; € (0,0.4);
the scores of the additional unchanging tokens are all fixed to the same value
of 0.02 (dark red), 0.04, 0.06, 0.08, 0.10, or 0.12 (light red). The plots in
the right-most column demonstrate the effect of adding the i*! token when
initially ¢; € (0.4,0.6); the scores of the additional unchanging tokens are
all fixed to the same value of 0.88 (dark blue), 0.90, 0.92, 0.94, 0.96, or 0.98
(light blue). o

viii

150

of the right circular cone can also be used to parameterize the cap. 200

212

215

List of Tables

1.1

3.1

4.1
4.2

4.3

4.4

Evaluation results of the accuracy of our virus detector against a number of
email-bourne viruses (see Nelson [2005] for a detailed explanation of these
results). Each experiment was repeated three times: first with only the
one-class SVM, then using only a naive Bayes parametric classifier, and fi-
nally with the two-stage system. We report the number of false positives,
false negatives, and correctly classified emails. The percentage of false posi-
tives/negatives is the percent of the normal/viral email misclassified.

Related work in the taxonomy. L ...

Parameters used in the experiments on attacking SpamBayes.
Effect of the RONI defense on the accuracy of SpamBayes in the absence
of attacks. Fach confusion matrix shows the breakdown of SpamBayes’s
predicted labels for both ham and spam messages. Left: The average per-
formance of SpamBayes on training inboxes of about 1,000 message (50%
spam). Right: The average performance of SpamBayes after the training
inbox is censored using the RONI defense. On average, the RONI defense
removes 2.8% of ham and 3.1% of spam from the training sets. (Numbers
may not add up to 100% because of rounding error.)
I apply the RONI defense to dictionary attacks with 1% contamination of
training inboxes of about 1,000 messages (50% spam) each. Left: The av-
erage effect of optimal, Usenet, and Aspell attacks on the SpamBayes filter’s
classification accuracy. The confusion matrix shows the breakdown of Spam-
Bayes’s predicted labels for both ham and spam messages after the filter is
contaminated by each dictionary attack. Right: The average effect of the
dictionary attacks on their targets after application of the RONI defense.
By using the RONI defense, all of these dictionary attacks are caught and
removed from the training set, which dramatically improves the accuracy of
the filter.
The RONI defense to focused attacks with 1% contamination of training
inboxes of about 1,000 messages (50% spam) each. Left: The average effect
of 35 focused attacks on their targets when the attacker correctly guesses 10,
30, 50, 90, and 100% of the target’s tokens. Right: The average effect of the
focused attacks on their targets after application of the RONI defense. By
using the RONI defense, more of the target messages are correctly classified
as ham, but the focused attacks largely still succeed at misclassifying most
targeted messages. L

X

15

37

78

88

88

Acknowledgements

First and foremost I would like to thank my advisor, Anthony Joseph, for the encourage-
ment, guidance, and support he has offered me throughout my graduate career. Anthony
taught me how to conduct successful research in a multi-disciplinary field and how to explore
new fields of research.

I would like to thank Professor Doug Tygar for his guidance and insight throughout my
graduate career. He made innumerable contributions to my development as a researcher and
provided invaluable advice for pursuing research during and after my tenure at Berkeley.

I would like to thank Professor Peter Bartlett for providing constructive insights into
my research and helping to guide the overall direction my research endeavors.

I would like to thank Professor Terry Speed for being on my qualifying exam and
dissertation committees, and for his encouragement and feedback.

For encouraging me to pursue graduate research and encouraging my ambitions, I would
like to thank Professor John Rose. For providing me with useful feedback, discussions, and
insights, I would like to thank Professor Satish Rao, Professor Michael Jordan, Professor
Laurent El Ghaoui, Professor Gert Lanckriet, and Professor Charles Sutton.

Many others have helped me over the course of my graduate career. I cannot thank
all these individuals enough for their support, but I would like to call attention to a few
who were most instrumental to this undertaking. I would particularly like to thank Marco
Barreno and Ben Rubenstein for their ideas, hard work, and dedication that made this dis-
sertation possible. Marco and Ben made critical contributions to my dissertation projects
and were extraordinary collaborators and friends. I would also like to thank Russell Sears,
Peter Bodik, Arel Cordero, Alexandre Bouchard, Fabian Wauthier, Kurt Miller, Anil Se-
wani, Steve Martin, Ira Cohen, Marius Kloft, and Guillaume Obozinski for their feedback,
discussions, and input that made this dissertation possible. For their collaboration on many
research projects and persistent hard work, I thank Udam Saini, Kai Xai, Shing-hon Lau,
Jack Chi, Anthony Tran, and Chris Cai.

Finally, I wish to thank my parents, Lonnie and Tricia Nelson, and my brother, Bryce
Nelson, for providing unwavering support, advise on life, and assistance when I needed it. I
would also like to thank Elizabeth Segran and Carolina Galleguillos for being good friends
who always were willing to listen and commiserate with me. Without all of them, this work
would not have been possible. Additionally, I wish to thank Mary Jane Sullivan, Arlen and
June Maxfeldt, Bob and Kelly Balzer, Bob and Jane Sullivan, Peter and Mary Sullivan,
and the rest of my extended family for reinforcing my pursuit of higher education.

Portions of this dissertation have appeared in previously published works [Barreno et al.,
2006, 2010, Nelson et al., 2008, 2009, 2010a, Rubinstein et al., 2009a].

I gratefully acknowledge the support of my sponsors. This work was supported in part by
TRUST (Team for Research in Ubiquitous Secure Technology), which receives support from
the National Science Foundation (NSF award number CCF-0424422) and the following orga-
nizations: AFOSR (#FA9550-06-1-0244), BT, Cisco, DoCoMo USA Labs, EADS, ESCHER,
HP,IBM, iCAST, Intel, Microsoft, ORNL, Pirelli, Qualcomm, Sun, Symantec,TCS, Telecom
Italia, and United Technologies; in part by RAD Lab (Reliable Adaptive Distributed Sys-
tems Laboratory), which receives support from California state Microelectronics Innovation

xi

and Computer Research Opportunities grants (MICRO ID#06-148 and #07-012) and the
following organizations: Amazon Web Services, CISCO, Cloudera, eBay, Facebook, Fujitsu
Labs of America, Google, Hewlett Packard, Intel, Microsoft, NetApp, SAP, Sun, VMWare,
and Yahoo!; and in part by the cyber-DEfense Technology Experimental Research labo-
ratory (DETERIab), which receives support from the Department of Homeland Security
Homeland Security Advanced Research Projects Agency (HSARPA award #022412) and
AFOSR (#FA9550-07-1-0501). The opinions expressed here are solely those of the author
and do not necessarily reflect the opinions of any funding agency, the State of California,
or the U.S. government.

xii

Chapter 1

Introduction

Machine learning has become a prevalent tool in many computing applications. While
learning techniques are already common for tasks such as natural language processing [cf.,
Jurafsky and Martin, 2008], face detection [cf., Zhao et al., 2003], and handwriting recog-
nition [cf., Plamondon and Srihari, 2000], they also have potentially far-reaching utility
for many applications in security, networking, and large-scale systems as a vital tool for
data analysis and autonomic decision making. As suggested by Mitchell [2006], learning
approaches are particularly well-suited to domains where either the application i) is too
complex to be designed manually or i) needs to dynamically evolve. Many of the chal-
lenges faced in modern enterprise systems meet these criteria and stand to benefit from
agile learning algorithms able to infer hidden patterns in large complicated datasets, adapt
to new behaviors, and provide statistical soundness to decision-making processes. Indeed,
learning components have been proposed for tasks such as performance modeling [e.g.,
Bodik et al., 2010, 2009, Xu et al., 2004], enterprise-level network fault diagnosis [e.g., Bahl
et al., 2007, Cheng et al., 2007, Kandula et al., 2008], and spam detection [e.g., Meyer and
Whateley, 2004, Segal et al., 2004] but generally adoption is not yet widespread.

One potential concern with learning algorithms is that they may introduce a security
fault into the system. The key strengths of learning approaches are their adaptability and
ability to infer patterns that can be used for predictions or decision making. However, these
assets of learning can potentially be subverted by adversarial manipulation of the learner’s
environment, which exposes applications that use machine learning techniques to a new
class of security vulnerabilities; i.e., learners are susceptible to a novel class of attacks that
can cause the learner to disrupt the system it was intended to improve. Here I analyze the
behavior of learning systems under duress in security-sensitive domains. My thesis is that
learning algorithms are vulnerable to a myriad of attacks that can transform the learner
into a liability for the system they are intended to aid, but by critically analyzing potential
security threats, the extent of these threats can be assessed, proper learning techniques can
be selected to minimize the adversary’s impact, and failures of system can be averted.

In this dissertation, I investigate both the practical and theoretical aspects of applying
machine learning to security domains and here I summarize the four components of my
dissertation project: a taxonomy for qualifying the security vulnerabilities of a learner, two
novel practical attack and defense scenarios, and a generalization of a paradigm for evading
detection of a classifier. I present a framework for identifying and analyzing threats to

learners and use it to systematically explore the vulnerabilities of two learning systems. For
these systems, I identify real-world threats, analyze the potential impact of each, and study
learning techniques that significantly diminish their vulnerabilities. In doing so, I provide
practitioners with guidelines to identify potential vulnerabilities and demonstrate improved
learning techniques resilient to attacks. My research focuses on learning tasks in virus,
spam, and network anomaly detection, but also is broadly applicable across many systems
and security domains and has far-reaching implications for any system that incorporates
learning. In the remainder of this chapter, I further motivate the need for a security analysis
of machine learning algorithms and provide a brief history of the work that led me to this
research and the lessons learned from it.

1.1 Motivation and Methodology

Machine learning techniques are being applied to a growing number of systems and net-
working problems. Of particular interest to my research work is the problem of detecting
various types of anomalous system behavior; I refer to this area broadly as malfeasance
detection and it includes spam, fraud, intrusion, and virus detection. For such a problem
domain, machine learning techniques provide the ability for the system to respond more
readily to evolving real-world data, both hostile and benign, and learn to identify or even
possibly prevent undesirable behavior. As an example, network intrusion detection systems
(NIDS) monitor network traffic to detect abnormal activities such as attempts to infiltrate
or hijack hosts on the network. The traditional approach to designing a NIDS relied on an
expert codifying rules defining normal behavior and intrusions [e.g. Paxson, 1999]. Because
this approach often fails to detect novel intrusions, a variety of researchers have proposed
incorporating machine learning techniques into intrusion detection systems [e.g., Mahoney
and Chan, 2002, Lazarevic et al., 2003, Mukkamala et al., 2002, Eskin et al., 2002]. Machine
learning techniques offer the benefit that they can detect novel differences in traffic (which
presumably represent attack traffic) by being trained on examples of innocuous (known
good) and malicious (known bad) traffic. Learning approaches to malfeasance detection
have also played a prominent role in modern spam filtering [e.g., Meyer and Whateley,
2004, Segal et al., 2004] and also have been proposed as elements in virus and worm de-
tectors [e.g., Newsome et al., 2005, Stolfo et al., 2003, 2004], host-based intrusion detection
systems (HIDS) [e.g., Forrest et al., 1996, Hofmeyr et al., 1998, Mutz et al., 2006, Somayaji
and Forrest, 2000, Warrender et al., 1999], and other types of fraud detection [cf., Bolton
and Hand, 2002].

However, using machine learning techniques introduces the possibility of an adversary,
who maliciously exploits the unique vulnerabilities of a learning system. With growing fi-
nancial incentives of cybercrime inviting ever more sophisticated adversaries, attacks against
learners present a lucrative new means to disrupt the operations of or otherwise damage
enterprise systems. This makes assessing the vulnerability of learning systems an essen-
tial problem to address in order to make learning methods effective and trustworthy in
security-sensitive domains. An intelligent adversary can alter his approach based on knowl-
edge of the learner’s shortcomings or mislead it by cleverly crafting data to corrupt or de-
ceive the learning process; e.g., spammers have regularly adapted their messages to thwart
or evade spam detectors. In this way, malicious users can subvert the learning process to
disrupt a service or perhaps even compromise an entire system.

The primary flaw in learners that attackers can exploit lies in the assumptions made
about the learner’s data. Many common learning algorithms are predicated on the as-
sumption that their training and evaluation data comes from a natural or well-behaved
distribution that remains stationary over time, or at worst, changes slowly in a benign way
(gradual drift). However, these assumptions are perilous in a security-sensitive domain—
an application domain where a patient adversary has a motive and the capability to alter
the data used by the learner for training or prediction. In such a domain, learners can be
manipulated by an intelligent adversary capable of cleverly violating the learner’s assump-
tions for their own gains making learning and adaptability into potential liabilities for the
system rather than benefits. I analyze how learners behave in these settings and alternative
methods that can bolster the system’s resilience to an adversary.

I consider several potential dangers posed to a learning system. The primary threat is
that an attacker can exploit the adaptive nature of a machine learning system to mis-train
it and cause it to fail. Here, failure consists of causing the learning system to produce
classification errors: if it misidentifies a hostile instance as benign, then the hostile instance
is erroneously permitted through the security barrier; if it misidentifies a benign instance as
hostile, then a permissible instance is erroneously rejected and normal user activity is inter-
rupted. The adversarial opponent has the ability to design training data that will cause the
learning system to produce rules that misidentify instances. If the system’s performance suf-
ficiently degrades, users will lose confidence in the system and abandon it or its failures may
significantly compromise the integrity of the system. This threat raises several questions:
What techniques can a patient adversary use to mis-train or evade a learning system? and
How can system designers assess the vulnerability of their system to vigilantly incorporate
trustworthy learning methods? 1 provide a framework for a system designer to thoroughly
assess these threats and demonstrate how it can be applied to evaluate real-world systems.

Developing robust learning and decision making processes is of interest in its own right,
but for security practitioners, it is especially important. To effectively apply machine learn-
ing as a general tool for reliable decision-making in computer systems, it is necessary to
investigate how these learning techniques perform when exposed to adversarial conditions.
Without an in-depth understanding of the performance of these algorithms in an adversarial
setting, the systems will not be trusted and will fail to garner wider adoption. Worse yet, a
vulnerable system could be exploited and disaffect practitioners from using learning systems
in the future. When a learning algorithm performs well under a realistic adversarial setting,
it is an algorithm for secure learning. Of course, whether an algorithm’s performance is
acceptable is a highly subjective judgement that depends both on the constraints placed
on the adversary and on the job the algorithm is tasked with performing. This raises two
fundamental questions: What are the relevant security criteria to evaluate the security of a
learner in a particular adversarial environment? and Are there machine learning techniques
capable of satisfying the security requirements of a given problem domain and how can such
a learner be designed or selected? 1 demonstrate how learning systems can be systematically
assessed and how learning techniques can be selected to diminish the potential impact of
an adversary.

I now present three high-level examples that describe different attacks against a learning
system. Each of these are later comprehensively analyzed in Chapters 4, 5, and 6, but here 1
summarize the setting of each to lay a foundation for the reader. In each synopsis I motivate
the learning task and the goal of the adversary. I then briefly describe plausible attacks
that align with these goals.

Example 1.1 (Spam Filter and Data Sanitization)

E Filter . -
: — -
. == Spam Folder
E Learner

‘ i Attacker

Contamination

Attacker’s Information

Spam filtering is one of the most common applications of machine learning. In this
problem, a set of known good email (ham) and unwanted email (spam) are used to
train a spam filter. The learning algorithm identifies relevant characteristics that
distinguish spam from ham (e.g., tokens such as “Viagra”, “Cialis”, and “Rolex” or
envelope-based features) and constructs a classifier that combines observed evidence
of spam to make a decision about whether a newly received message is a spam or ham.

Spam filters have proven to be successful at correctly identifying and removing
spam messages from a user’s regular messages. This has inspired spammers to
regularly attempt to evade detection by obfuscating their spam messages to confuse
common filters. However, spammers can also corrupt the learning mechanism. As
pictured in the diagram above, a clever spammer can use information about the
email distribution to construct clever attack spam messages that, when trained
on, will cause the spam filter to misclassify the user’s desired messages as spam.
Ultimately, the spammers goal here is to cause the filter to become so unreliable that
the user can no longer trust that his filter has accurately classified the messages and
must sort through spam to ensure that important messages are not erroneously filtered.

In Chapter 4, I explore several variants of this attack based on different goals for
the spammer and different amounts of information available to him. This attack proves
to be quite effective: if a relatively small number of attack spam are trained on, the
accuracy of the filter is significantly reduced. However, I also show that a simple data
sanitization technique that was designed to detect deleterious messages is effective in
preventing many of these attacks. In this case, the attacker’s success depends primarily
on the scope of their goal to disrupt the user’s email.

Example 1.2 (Network Anomaly Detector)

Poisoning along Target Flow

— Flow
3 Flow mean
Seattle ™~ .
s e —— Poison
5 Ny \?/A —~ /

Ny
T,

(" e 4/"
' ~
{ ! b L/W
| & Lo
. N Chicago @/= =
.
- @indiana PR

Denver ~ ~ _Kansas _ _ - -

Time (Hours})

Subspaces with 35 % Poisoning

Principal
Component
Analysis

|=="Initial PCA

== Initial ANTIDOTE
= Poisoned PCA
===Poisoned ANTIDOTE

Projection onto Target Flow

Normal ;
Usage 8 e
Patterns

Projection on 15t Principal Component

Machine learning techniques have also been proposed by Lakhina et al. [2004b] for
detecting network volume anomalies such as denial-of-service (DoS) attacks. Their
proposal uses a learning technique known as principal component analysis (PCA)
to estimate normal traffic patterns and identify anomalous activity in the network.
However, as with the spam filter in the previous example, this technique is also
susceptible to contamination.

As depicted in the above diagram, PCA extracts patterns from traffic observed
flowing over a backbone communications network to construct a normal model of
it. This model is subsequently used to detect DoS attacks. Thus, an adversary
determined to launch a DoS attack must first evade this detector. A crafty adversary
can successfully evade detection by mis-training the detector. He can systematically
inject chaff traffic into the network that is designed to make his target flow align
with the normal model—this chaff (depicted in red in the top-right figure) is added
along the target flow to increase variance. The resulting perturbed model (see the
bottom-right figure) is unable to detect DoS attacks along the target flow.

I explore attacks against the PCA-base detector in Chapter 5 again based on dif-
ferent sources of information available to the adversary. Attacks against PCA prove
to be effective—they successfully increase its rate of mis-detection eight to ten-fold. I
also explore an alternative detection approach called ANTIDOTE designed to be more
resilient to chaff. The evasion success rate for the same attacks against ANTIDOTE is
roughly halved compared to the PCA-based approach. However, resilience to poisoning
comes at a price—ANTIDOTE is less effective on non-poisoned data than the original
detector.

Example 1.3 (Near-Optimal Evasion)

Subj: Cheap Online Pharmacy, Order
Prescription drugs online. Low
Price guaranteed, fast shipping.

FDA & CPA Approved Pharmacy site
FAST DELIVERY!

Viagra from $1.82

Cialis from $2.46

Viagra soft tabs from $2.25
Cialis soft tabs from $2.52

VeriSign secured payment site
‘We ship to all countries

Ready to boost your sex life? Positive?
It’s time to do it now!

Order above pills at unbelievable low price

Subj: Cheap Online Pharmacy, Order
Prescription drugs online. Low
Price guaranteed, fast shipping.

FDA & CPA Approved Pharmacy site
FAST DELIVERY!

Vl1@gra from $1.82

Cialis from $2.46

V1@gra soft tabs from $2.25
Cialis soft tabs from $2.52

VeriSign secured payment site
‘We ship to all countries

Ready to boost your sex life? Positive?
It’s time to do it now!

Order above pills at unbelievable low price

In addition to misleading learning algorithms, attackers also have an interest in evading
detectors by making their miscreant activity undetectable. As previously mentioned
in Example 1.1, this practice is already common in the spam filtering domain where
spammers attempt to evade the filter by i) obfuscating words indicative of spam to
human-recognizable misspellings; e.g., “Viagra” to“V1Qgra” or “Cialis” to “Gialis”,
i1) using clever HTML to make the content difficult to parse, 4ii) adding words or text
from other sources unrelated to the spam, and iv) embedding images that contains
the spam message. All of these techniques can be used to evade spam filters, but
they also are costly for the spammer—altering his spam can make the message less
profitable as the distortions reduce the message’s legibility or its accessibility. Thus,
in evading the filter, the spammer would like to minimally modify their messages,
but for a dynamically learned filter, the spammer does not know the learned filtering
rules. Instead, the spammer constructs test spams that he uses to probe the filter
and refine his modifications according to some cost on them. This raises the following
question: How difficult is it for the spammer to optimally evade the filter by querying it?

The near-optimal evasion problem, which I examine in Chapter 6, formalizes this
question in terms of the query complexity required by the spammer to evade a particular
family of classifiers. I study the family of convex-inducing classifiers and I show that
there are efficient algorithms for near-optimal evasion under certain /¢, cost functions.

1.2 Guidelines from Computer Security

To assess the vulnerabilities of learning systems, I built on many principles established in
traditional computer security. The area of computer security is a broad field with many
facets and only a subset of them are pertinent to my work. In great generality, computer
security is concerned with quantifying, managing, and reducing the risks associated with
computer systems and their usage. Traditional topics in security include cryptography, au-
thentication, secure channels, covert channels, defensive programming practices, static code
analysis, network security, and operating system security and traditional (code-based) vul-
nerabilities include buffer overflows, format string vulnerabilities, cross application scripting,
code injection attacks, and privilege escalation. Unlike classical security settings, attacks
against a learning system exploit the adaptive nature of the learning system. Not only can
the adversary exploit existing flaws in the learner, he can also mislead the learner to create
new vulnerabilities. Nonetheless, classical security principles are also applicable for analyz-
ing machine learning algorithms. Particularly, the principles of proactively studying attacks,
Kerckhoffs’ Principle, conservative design, and formal threat modeling are the foundation
of my approach.

Proactive Analysis: The first guideline from computer security is to conduct proactive
studies to anticipate potential attacks before a system is deployed or widely used. Analysis
of and open debate about the security of a system provide a level of confidence in it and
identifying vulnerabilities before deployment can prevent costly patches, rewrites, or recalls
of flawed systems. My dissertation is a proactive study in the sense that I am exploring the
vulnerabilities of learning systems to identify threats before major systems are damaged
or compromised and, in exposing these vulnerabilities, I also offer alternative systems that
thwart or mitigate them. Further, I provide general guidelines to system designers to aid
them in analyzing the vulnerabilities of a proposed learning system so that learning can be
deployed as an effective and reliable component even in critical systems.

Kerckhoffs’ Principle: The second guideline often referred to as Kerckhoffs’ Principle
[Kerckhoffs, 1883] is that the security of a system should not rely on unrealistic expectations
of secrecy. Depending on secrets to provide security is a dangerous policy because if these
secrets are exposed the security of the system is immediately compromised. Ideally, secure
systems should make minimal assumptions about what can realistically be kept secret from
a potential attacker. The field of cryptography has embraced this general principle by
demanding open algorithms that only require a secret key to provide security or privacy.
I apply this principle to analyzing machine learning systems throughout this dissertation
primarily by assuming that the adversary is aware of the learning algorithm and can obtain
some degree of information about the data used to train the learner. However, determining
the appropriate degree of secrecy that is feasible for secure machine learning systems is a
difficult question, which I discuss further in Chapter 7. In each of the chapters of this thesis,
I consider various levels of information that the adversary potentially obtains, and I assess
how the adversary can best utilize this information to achieve their objective against the
learner. In doing so, I demonstrate the impact of different levels of threat and show the
value an adversary obtains from a particular source of information.

Conservative Design: The third principle I employ is that security analysis of a system
should generally avoid placing unnecessary or unreasonable limitations on the adversary.
All too often, major security compromises occur because designers failed to anticipate how
powerful an adversary is or how well informed the adversary is. By assuming the adversary
has the broadest possible powers, one can understand the worst-case threat posed by an
adversary and users are less likely to be surprised by an attack by some unanticipated ad-
versary. Conversely, though, analyzing the capabilities of an omnipotent limitless adversary
reveals little about a learning system’s behavior against realistic attackers and may lead
to an unnecessarily bleak outlook on the feasibility of using learning at all. Instead, my
approach is to construct an appropriate threat model to quantify the relationship between
the adversary’s effort and their effect on the system under a variety of different levels of
threat including a worst-case adversary.

Threat Modeling: Finally, to analyze the vulnerabilities of machine learning systems, I
follow the typical security practice of constructing a formal (attacker-centric) threat model.
In most interesting settings, a completely secure system is infeasible and I do not attempt
to achieve complete security in my work. Instead, my approach quantifies the degree of
security—the level of security expected against an adversary with a certain set of objectives,
capabilities, and incentives based on a threat model. Building a threat model allows the
analyst to quantify the security of his system and design approaches to making the system
reasonably secure.

To construct a threat model for a particular learning system, first the analyst quantifies
the security setting and objectives of that system in order to develop criteria to measure
success and quantify the level of security offered. Formalizing the risks and objectives allows
the analyst to identify potential limitations of his system and potential attacks and focuses
the analysis on immediate threats so as to avoid wasting effort protecting against nonexistent
or ancillary threats. Next the analyst identifies potential adversarial goals, resources, and
limitations. By examining the nature of anticipated adversaries and their goals, the analyst
can quantify the effort required by the adversary to achieve their objectives. Based on
this threat model, the analyst can finally analyze the security of his system and construct
appropriate defenses against realistic forms of attack. Formal analysis provides a rigorous
approach to security. Additionally, by formalizing the threats and security of a system,
other analysts can critique the analyst’s assumptions and suggest potential flaws in his
design. This open process tends to improve a system’s security.

In this dissertation, I analyze three separate security problems for machine learning
systems. In each, I first specify the threat model posed and subsequently analyze the
threat’s impact and, where appropriate, I propose defenses against the threat. It is well-
established in computer security that evaluating a system involves a continual process of
first, determining classes of attacks on the system; second, evaluating the resilience of the
system against those attacks; and third, strengthening the system against those classes
of attacks. Throughout this dissertation, I follow exactly this model in evaluating the
vulnerabilities of learning algorithms.

1.3 Historical Roadmap

Here I briefly summarize a series of projects that led me to study the adversarial machine
learning setting and the lessons I learned in this early work that molded my approach to
the topic. Prior to my dissertation project, I sought to use machine learning algorithms
in various novel application domains that had adversarial elements. The first of these
was a research project conducted at Duke University to detect anti-personnel landmines
by identifying their unique electromagnetic signatures. I explored an approach based on
neural networks trained to identify these devices based on readings from a metal detector.
However, at the time, I did not consider the adversarial nature of landmine design or its
potential impact on my detector. At Berkeley, I first explored applications of learning
algorithms to computer systems and pursued a learning approach for detecting computer
viruses, which was designed to capture requisite characteristics of viral behavior, but the
inherently adversarial and adaptive nature of computer viruses led me to question our
detector’s longevity and security. I began scrutinizing this subject with colleagues with
backgrounds in security, machine learning, and systems. This led us to design some of
the elements of the detector to be robust against changing viral behaviors, to construct a
theoretical model for analyzing the effect of contamination on hypersphere classifiers, and
ultimately led to my doctoral project described in this thesis. Here, I briefly summarize the
projects that proceeded my dissertation thus providing a chronology of the progression of
my investigation into the security of learning algorithms.

1.3.1 Landmine Detection System

My first foray into applied machine learning was a project that explored neural network
detectors for landmine detection and identification. This project extended research in ex-
isting signal analysis algorithms for landmine identification by examining a specific class of
objects called anti-personnel devices that contain only a small amount of asymmetrically
arranged metal causing their characteristic wide-band frequency responses to deviate sig-
nificantly with small changes in relative position between a sensor and the landmine. This
project explored methods to improve and extend the capabilities of existing algorithms by
quantifying the limitations of electromagnetic induction (EMI) sensors for such objects and
attempting to account for these deviations to properly identify anti-personnel devices when
the sensor is not precisely centered over a device.

For this purpose, I used a set of neural network classifiers to learn the EMI responses
characteristics that were unique for each type of anti-personnel device [Nelson et al., 2003].
The results of this effort met with limited success—while the neural net approach was
effective it was outperformed by other signal processing techniques in several circumstances.
Nonetheless, this project was my first attempt to use a learning algorithm in a security-
sensitive domain. In this case, landmine makers played the role of designing anti-personnel
devices to be difficult to detect using EMI sensors and undoubtedly, if these sensors coupled
with techniques from learning theory or signal processing were able to effectively detect
these landmines, the designers would further refine their designs to thwart these detectors
as well. Not realizing the adversarial nature of this problem at the time, I reasoned about
the neural network learner’s effectiveness by measuring their detection capability on known
landmine signatures without considering the potential for re-designs to evade detection—a

10

mistake often made by machine learning practitioners working in adversarial environments.
Throughout this dissertation, I critique such oversights and both provide examples of how
adversaries can effectively thwart learning systems and how learning systems can be more
resilient to adversaries.

1.3.2 Virus Detection System

In my second learning-based application, I designed and implemented a dynamic virus de-
tection system in collaboration with Karl Chen, Steve Martin, Anil Sewani, and Anthony
Joseph [Martin, 2005, Sewani, 2005, Nelson, 2005]. In designing this system, my collabo-
rators and I sought to counter the proliferation of novel email-based viruses and protect
against obfuscation through polymorphisms. We demonstrated that this system could ef-
fectively detect a wide-variety of novel email-based viruses, because, unlike a rule-based
signature detector, our system’s learning component was able to quickly adapt to new
threats. Here, I briefly give an overview of that virus detection system and the design con-
siderations meant to remedy the fast spread of email viruses seen at that time. However,
in designing and evaluating our system, I realized that learning systems could themselves
become a significant vulnerability in a hostile environment—these considerations led to the
systematic evaluation of the security of machine learning systems that I present throughout
the rest of this work. Below, I briefly discuss the relevant details of this virus detection sys-
tem and then critique its design from a security perspective to further motivate the security
analysis described in the remainder of this dissertation.

The virus detection we designed was intended to counter the rapid proliferation of
novel mass-mailing viruses that had made traditional signature-generation-based approaches
untenable. The crux of this problem was the slow dissemination of the virus signature
updates required by traditional systems to effectively halt viral spread. Such signatures
were traditionally manually generated after samples of the novel virus were submitted to
the anti-virus company for analysis—a process that left vulnerable systems unprotected
to attack for hours or days whilst the virus spread. These response times were woefully
inadequate to prevent devastating viral epidemics that wasted or damaged valuable network
and computing resources by rapidly propagating as quickly as email could be sent.

Our detection strategy was a reactive approach; rather than detecting the incoming
viral messages, we attempted to detect infected machines disseminating mass-emails—i.e.,
an extrusion detection architecture as depicted in Figure 1.1(a). We chose an extrusion
detection approach because even an effective intrusion-based virus detection system can
fail (e.g., detection can be circumvented if an externally infected machine is inadvertently
brought behind the network’s defenses) and expose the network to damages wrought by the
virus from within. Further, we believed that the behavior of an infected machine was more
detectable than the inbound infection because, once an infection succeeds, the compromised
host tends to dramatically deviate from normal user behavior as the virus attempts to
quickly propagate. Our system was thus designed to mitigate the effect of an infection once
it occurs. By applying our approach at the network level, we hoped that quarantining based
on the behavior of an infected machine would reduce the damage to mail-servers caused by
an overwhelming stream of viral emails and isolate the infected hosts until they could be
disinfected. Ultimately, we sought to thwart or mitigate the rapid proliferation strategy of
email-based viruses.

11

T
: | Our System ‘ ‘
Local Host

@ Sw1tch i
Local Host E

Mail Server

Local Area Network Local Host
(a) Virus Extrusion Detector Architecture
Parametric .
Calculation || Throttling
Feature Novelty Parametric . Human
. . > . > Throttl .
Calculation Detection || | Calculation rotting Supervisor
Parametric
. Throttli
Calculation [] rotiing

(b) Pipeline of Detectors for Virus Detection

Figure 1.1: Diagrams of the virus detection system architecture described in Martin
[2005], Sewani [2005], Nelson [2005]. (a) The system was designed as an extrusion detector.
Messages sent from local hosts are routed to our detector by the mail server for analysis—
benign messages are subsequently sent whereas those identified as viral are quarantined for
review by an administrator. (b) Within the detector, messages pass through a classification
pipeline. After the message is vectorized, it is first analyzed by a one-class SVM novelty
detector. Messages flagged as ‘suspicious’ are then re-classified by a per-user naive Bayes
classifier. Finally, if the message is labeled as ‘viral’ a throttling module is used to determine
when a host should be quarantined.

12

Our network solution to detecting viral activity in out-going email traffic used statistical
learning techniques to monitor for sufficient deviations from normal email behavior using
the architecture depicted in Figure 1.1(b). This design incorporated a set of features that
represented the current state of email behavior. Using feature selection techniques, we chose
a robust set of features that accurately distinguished normal behavior from viral behavior.
A novelty detection algorithm was then used as a filter to isolate the majority of normal
messages and a classification layer used past viral behavior to reduce false positives caused
by traditional novelty detection alone. The resulting system was capable of quarantining
hosts believed to be exhibiting viral behavior.

To detect mass-mailing viruses, we considered features that would best distinguish the
infected and normal email behavior based on the following observations of email viruses:
they must propagate the infection, they attempt to avoid detection, they have some degree
of repetition between emails, and they have traditionally sent email at extraordinarily fast
rates to propagate quickly. To capture these behaviors, we constructed two general types of
features: per-message features that describe characteristics of a single message and window-
based features that describe the behavior of the latest set of messages. These features are

listed in the table below.

Per-message Features Window-based Features
1. | Whether or not the message is a reply or | Frequency of emails sent in the window
forward
2. | Presence of HTML in the message Number of unique email recipients
3. | Presence of HTML script tags or at- | Number of unique sender addresses
tributes in the message
4. | Presence of embedded images in the mes- | Average number of words in the subject
sage lines
5. | Presence of hyperlinks in the message Average number of words in the bodies
6. | MIME types of file attachments in the | Average number of characters in the sub-
message ject lines
7. | Presence of binary attachments Average number of characters in the bod-
ies
8. | Presence of text attachments Average word length in the messages
9. | The UNIX “magic number” of file attach- | Variance in number of words in the subject
ments lines
10. | Total size of the message including attach- | Variance in number of words in the bodies
ments
11. | Total size of files attached to the email Variance in number of characters in the
subject lines
12. | Number of files attached to the email Variance in number of characters in the
bodies
13. | Number of words in the message’s subject | Variance in word length in the messages
line
14. | Number of words in the message’s body Fraction of emails with attachments
15. | Number of characters in the message’s | Fraction of emails with replies or forwards
subject line
16. | Number of characters in the message’s
body

13

To determine which of these features best distinguished viral and normal email behavior,
we used feature selection to choose a subset of these features which empirically were most
predictive of viruses. We employed a method discussed by Shawe-Taylor and Cristianini
[2004] that finds the directions (i.e., combinations of features) with maximal covariance with
the labels and we selected the dominant feature representative of that direction in a greedy
fashion. Using this feature selection, we winnowed the set of features used by our model
down to the following seven features which we used to construct our detector: i) presence
of HTML in the message, i) number of files attached to the email, 4ii) presence of binary
attachments,) fraction of emails with attachments, v) frequency of emails sent in the
window, vi) average number of words in the message bodies, and vi7) variance in the number
of words in the message bodies These features provide strong indicators for the behavior
of a mass-mailing virus primarily focusing on the presence of executable attachments, the
frequency of sending messages, and repetition in the email content, which aligned well with
our intuition about the characteristics of viruses. Based on these features, each message
was represented to our virus detection system as a seven-dimensional vector.

Our detector used a multi-tiered approach to identify compromised hosts attempting
to propagate their infection via email. The first stage in detection was a novelty detection
technique called a one-class support vector machine (SVM), which can identify messages
that significantly deviate from the normal data; i.e., anomalous messages that are unchar-
acteristic of the user’s normal behavior. Importantly, unlike the usual classification setting
(see Chapter 2.2.4), a novelty detector learns by only observing normal messages. This
property made the novelty detection paradigm well-suited to our setting since the normal
behavior for a user was assumed to be (semi)-stable and non-adversarial whereas the behav-
ior of different viruses may differ dramatically and future novel viruses could be designed
specifically to deviate from the viral characteristics learned by our model. However, a pure
novelty detection paradigm also has drawbacks—instead of learning specific viral charac-
teristics it is only able to identify anomalous ones, which may not entirely coincide. As
a result, we found that to have a reasonable detection rate, the one-class SVM had to
have an unreasonably high false positive rate for a practical filter; i.e., its ROC curve was
unacceptably low. This led us to add a second stage into our filter.

Instead of using pure novelty detection, we instead used the one-class SVM to detect
suspicious user behavior and then used a second layer of classification to determine whether
or not a suspicious message was viral. This two-stage architecture allowed us to employ an
extremely sensitive novelty detector with a low false negative rate (but high false positive
rate) then correct most of the false positives by classifying the suspicious messages it iden-
tified as either viral or innocuous with a (two-class) naive Bayes classifier. In contrast to
the novelty detector, the naive Bayes classifier was a per-user model capturing each indi-
vidual user’s email behavior. Thus, after an email was deemed suspicious by the novelty
detector, a personalized model compared the email’s characteristic to that user’s previous
behavior and to that of known viruses. We found the combined classification performance
of this two-stage detection architecture surpassed the accuracy of either detector by itself
as summarized in Table 1.1.

In the final stage of detection, messages deemed to be viral by our naive Bayes classifier
were used to make a quarantine decision building on strategies by Williamson [2002] to
throttle the spread of viruses. If sufficiently many messages in the recent past were deemed
to be viral the machine would be quarantined until an administrator could disinfect it. Our

14

. ‘Novel’ Email Virus Tested
Experiment
BubbleBoy ‘ Bagle.F ‘ Netsky.D ‘ Mydoom.U ‘ Mydoom. M ‘ Sobig.F
SVM Only
Num. False Positives 198 219 219 215 222 222
Num. False Negatives 0 1 0 0 0 4
Num. Correctly Classified 1201 1179 1180 1184 1177 1173
% False Positives 16.50 18.25 | 18.25 17.92 18.50 18.50
% False Negatives 0.00 0.50 0.00 0.00 0.00 2.01
% Total Accuracy 85.85 84.27 | 84.35 84.63 84.13 83.85
Naive Bayes Only
Num. False Positives 33 17 17 17 20 17
Num. False Negatives 8 4 4 4 4 5
Num. Correctly Classified 1358 1378 1378 1378 1375 1377
% False Positives 2.75 1.42 1.42 1.42 1.67 1.42
% False Negatives 4.02 2.01 2.01 2.01 2.01 2.51
% Total Accuracy 97.07 98.50 | 98.50 98.50 98.28 98.43
Two-Layer Model
Num. False Positives 9 10 10 10 12 10
Num. False Negatives 8 4 4 4 4 5
Num. Correctly Classified 1382 1385 1385 1385 1383 1384
% False Positives 0.75 0.83 0.83 0.83 1.00 0.83
% False Negatives 4.02 2.01 2.01 2.01 2.01 2.51
% Total Accuracy 98.78 99.00 | 99.00 99.00 99.00 98.93

Table 1.1: Evaluation results of the accuracy of our virus detector against a number of
email-bourne viruses (see Nelson [2005] for a detailed explanation of these results). Each
experiment was repeated three times: first with only the one-class SVM, then using only
a naive Bayes parametric classifier, and finally with the two-stage system. We report the
number of false positives, false negatives, and correctly classified emails. The percentage of
false positives/negatives is the percent of the normal/viral email misclassified.

15

thresholding module was designed to mitigate the effect of false positives but at the cost
of introducing some additional false negatives during the initial period of infection. Our
quarantine strategy applied a threshold to the percentage of emails classified as infected
over a sliding window of the last ten messages; if that threshold was exceeded, it would
be possible to report, with high confidence, that a machine was infected and quarantine it.
This approach allowed our detector to significantly reduce the virus’ ability to propagate
(and thus stymied their purpose) while further reducing the impact on normal users as is
detailed in Sewani [2005].

In designing our virus detection system, my colleagues and I attempted to anticipate and
prevent future virus outbreaks. By targeting the principal behaviors of fast-spreading email
viruses (need to propagate quickly, need to send executable attachments, etc.), our detection
system was designed to be robust against superfluous changes to viral behavior meant to
confuse the detector without altering the actual effect of the virus. Further, by using two-
stage classification, we hoped to make the detector more difficult to circumvent since an
evading virus would have to navigate successfully through two layers of detection. However,
while our system proved to be effective in detecting observed email virus outbreaks, it is
again unclear if this approach could have effectively detected viruses designed to thwart it.
Our hope was that a virus would have to significantly degrade its own objectives to evade
detection (e.g., a virus may slow its spread but, in doing so, it would defeat its own purpose)
but we were unable to verify how effectively a virus could evade our system. In designing
a two-layer detection system with a non-linear novelty detector, the resulting detector was
difficult to interpret; i.e., it was unclear what rules the detector had constructed to flag
viruses and whether those rules had blind spots. Further, our multi-stage architecture was
less robust than we had intended—rather than having to evade all the stages, a virus would
only need to evade any single one. In retrospect, a better design for multiple detectors
would be to treat each as an expert and aggregate their predictions as is discussed in
Chapter 3.6. Finally, in designing our system, we never considered that our training data
may be contaminated by malicious data—this oversight spawned my first project specifically
addressing adversarial learning.

1.3.3 Hypersphere Model

In continuing to explore virus detection, I began investigating how vulnerable our learning
algorithm was to adversarial contamination. The threat of an adversary systematically
misleading our outlier detector led me to construct a theoretical model for analyzing the
effect of contamination on our learning approach to virus detection. In my Master’s Thesis
[Nelson, 2005], I analyzed a simple algorithm for outlier detection based on bounding the
normal data in a mean-centered hypersphere of fixed radius as depicted in Figure 1.2(a).
I analyzed this detector instead of the one-class SVM primarily because the hypersphere
is easier to analyze and I hoped the analysis used on it could be extended to hyperplane
classifiers (like the one-class SVM) although these extensions have not yet been pursued.

In the hypersphere model, the novelty detector is a mean-centered hypersphere of fixed
radius R (possibly in a kernel-space). This novelty detector uses a bootstrapping retraining
policy—only adding points classified as normal to the training set while anomalous data
points are discarded. Further, the data points in the training set are never removed; i.e.,
there is no aging of data. I also made strong conservative assumptions about the attacker to

16

(a) Hypersphere Outlier Detection (b) Attack on a Hypersphere

Figure 1.2: Depictions of the concept of hypersphere outlier detection and the vulnera-
bility of naive approaches. (a) A bounding hypersphere centered at Xeqn of fixed radius
R is used to encapsulate the empirical support of a distribution by excluding outliers be-
yond its boundary. Samples from the ‘normal’ distribution are indicated by *’s with three
outliers on the exterior of the hypersphere. (b) How an attacker with knowledge about the
state of the outlier detector can shift the outlier detector toward the goal x4. Tt will take
several iterations of attacks to sufficiently shift the hypersphere before it encompasses x*
and classifies it as benign.

bound the minimal amount of effort he requires to be successful. I assumed the attacker is
omnipotent—he knows the state of the novelty detector, the policies of the novelty detector,
and how the novelty detector will change on retraining. I also assumed that the attacker
could control all training data once his attack commenced.

For this basic model for novelty detection, I analyzed a contamination scenario whereby
the attacker poisons the learning algorithm to pervert its ability to adapt into a tool the
adversary uses to accomplish his objective. The objective I considered was that the ad-
versary wants the novelty detector to misclassify a malicious target point x” as a normal
instance. However, the initial detector correctly classifies x4 as malicious so the adversary
must manipulate the learner to achieve his objective. Initially, the attacker’s target point
x4 is located a distance D radii from the side of the hypersphere (or a total distance of
R (D + 1) from its initial center), the initial hypersphere was trained using N initial be-
nign data points, and the adversary has M total attack points to use during the attack
which takes place over the course of T retraining iterations of the hypersphere model. The
purpose of studying this simple attack scenario was to quantify the relationship between
the attacker’s effort (i.e., M, the number of attack points required) and the attacker’s im-
pact (in terms of the number of radii D that the hypersphere is shifted) to gain a better
understanding of the effectiveness of data contamination on learning agents.

Based on the assumptions made about the attacker’s omnipotence and control of the
training data, constructing optimal attacks for this model was straightforward. The optimal
attacker can maximally displace the bounding hypersphere towards x? by inserting the
attacks points near the boundary along the line between the mean of the current hypersphere

17

and x?; i.e., at the fo-projection of x4 onto the hypersphere. This attack strategy is
depicted in Figure 1.2(b). The only question that remained was how to allocate the M
attack points among the T retraining iterations, which I showed to be equivalent to a
center-of-mass problem where 1" blocks of length 2R are stacked to maximize their extent
beyond the edge of a precipice. Here the top ¢ blocks have a total mass of M; and the stack
has a total mass of M with an additional point mass N on the outer edge of the top block.
The optimal allocation of mass amongst these blocks must satisfy the following conditions:

My = N
M;_4 M;
= Vi<t<T
M; My -

Mr = M+ N .

By relaxing the integer constraints on the My, I showed that the optimal real-valued solution
is given by
My = NCF) (v + V) (F)

This also yielded the following bound on the total number of attack points M required to
shift the hypersphere by a distance of D radii over T iterations:

)
fenl2))

This bound was a positive result in that it showed that trimmed means are hard to
poison as they accumulate training data in an online fashion. Thus, because of the bootstrap
retraining and the retention of all old data, the mean-centered hypersphere was shown to
be difficult to displace by large distances in that the required effort M is exponential in
the desired displacement D. However, this result also indicated that such a retraining
process becomes less adaptable to regular distributional shifts as more data accumulates,
which reduces the utility of such a model considerably. This model lacked a realistic policy
for retraining and makes the unrealistic assumption that the attacker controls all data
during the attack. Nonetheless, this work served as a foundation for analyzing repeated
contamination games in which the adversary attempts to poison a filter over many retraining
iterations and Kloft and Laskov [2010] extended this model by considering more realistic
retraining policies and a more realistic setting for the attack. Further, this early work
on contamination models heavily influenced my subsequent approach to the adversarial
learning framework that I describe in the remainder of this dissertation.

M

v

v

1.4 Dissertation Organization

The remainder of this dissertation is organized into three parts. In the first part, I present
the background and foundational materials for this work. In the next chapter, I present a
synopsis of machine learning and introduce my notation. Then in Chapter 3, I introduce a
framework for assessing the security properties of learning agents, I present the taxonomy
of attacks against learners, and I categorize and discuss the prior work within the context of

18

this framework. I also apply the framework to motivate two studies of practical applications
of learning algorithms.

In the second part, I investigate two practical attacks against learning systems and cor-
responding defenses based on the framework. The first is a spam filter called SpamBayes
that I investigate in Chapter 4. I show that the SpamBayes filter is vulnerable to attack
messages that contaminate its training data causing it to subsequently misclassify normal
messages as spam, but I also demonstrate that a simple data sanitization technique can
effectively detect and remove attack messages with a minimal impact on the filter’s perfor-
mance. In Chapter 5, I study a class of data poisoning strategies against a second learning
system—a PCA-based anomaly detector designed to identify network-wide DoS attacks in
a backbone communication network. Again, I show that this class of algorithms is suscep-
tible to poisoning, but in this case, I show that an alternative algorithm based on a robust
variant of PCA is able to substantially mitigate the effect of the poisoning.

In the final part of the dissertation, I explore the near-optimal evasion problem for
the family of convex-inducing classifiers. I apply the framework to a theoretical model of
classifier evasion in Chapter 6. I generalize the near-optimal evasion framework of Lowd and
Meek [2005b] to the broader family of convex-inducing classifiers and explore algorithms
for evading these classifiers based on the family of £, costs. In the final chapter, Chapter 7,
I conclude with a summary of the contributions of this dissertation and discuss important
themes and open questions for the field of adversarial learning in security-sensitive domains.
Below, I outline the primary contributions I make in this dissertation.

1.4.1 Contributions

In this dissertation, I present a systematic approach for identifying and analyzing threats
against a machine learning system. I examine a number of real-world learning systems, as-
sess their vulnerabilities, demonstrate real-world attacks against their learning mechanism,
and propose defenses that can successfully mitigate the effectiveness of such attacks. In
doing so, I provide machine learning practitioners with a systematic methodology for as-
sessing a learner’s vulnerability and developing defenses to strengthen their system against
such threats. Additionally, I also examine and answer theoretical questions about the limits
of adversarial contamination and classifier evasion.

My first major contribution is a central framework for categorizing and describing po-
tential threats against a learning system (Chapter 3). This framework provides a taxonomy
of attacks, which divides threats along three axes. These axes describe the fundamental
characteristics of attacks that transcend domain-specific differences to elicit commonalities
among attacks in very different problem domains. I show that a security threat can also be
modeled as a game between the adversary and the learner, in which the characteristics of
the threat define the nature of the game. Each of these games engenders potential limits
on the adversary (and learner) and allow a security analyst to assess the learner’s vulnera-
bility. I identify plausible models for adversarial contamination and evasion of the learning
algorithm. Finally, the framework plays an essential role in motivating the practical attacks
on two realistic learning systems that are my next contribution.

The second principal contribution I make in this dissertation is a systematic investi-
gation of attacks on real-world learning systems—first a spam filter in Chapter 4 then a

19

network anomaly detector in Chapter 5. For both of these system, I assess potential attacks
against the learner based on the framework. I identify plausible objectives for attackers,
construct a threat model, and investigate how effectively the attacker can achieve their
objective in several different scenarios, which provide different levels of information to the
adversary. By examining the adversary’s impact in these different settings, I quantified
attacks ranging from a worst-case omnipotent adversary to more realistic information and
resource constrained opponents. For both learning systems, I demonstrate that realistic
adversary’s can have a devastating impact on the performance of these systems by making
small adversarial alterations to the training data.

My third contribution is the design and analysis of defenses that I show can substantially
mitigate attacks on real-world learning systems. The first is a data sanitization technique
that I propose as a method of filtering contaminated training data for spam filtering (Chap-
ter 4.4). The technique I propose estimates the impact each message has on the filter and
excludes messages whose estimated impact is exceedingly damaging to the filter’s perfor-
mance. I show that this simple sanitization method is extraordinarily effective in preventing
some attacks against the learning algorithm. The second technique is an alternative learn-
ing method for the network anomaly detection setting. I adapt a technique from robust
statistics that was specifically designed to behave well under adversarial contamination.
I show that the alternative method successfully mitigates the effectiveness of the attacks
and outperforms the original detector under even small amounts of adversarial contamina-
tion. By constructing successful defenses against attacks, I establish methods for hardening
vulnerable learning systems against potential threats and assess the limits of these defenses.

Finally, my fourth contribution is a generalization of a theoretical framework for assess-
ing classifier vulnerability to evasion (Chapter 6). I build on the setting proposed by Lowd
and Meek [2005b] for quantifying the difficulty for an adversary to programmatically find
a classifier’s most desirable blind spots in terms of the query complexity required by the
adversary to find such an evading instance that is near-optimal according to some notion of
adversarial cost. In my investigation, I show that near-optimal classifier evasion is possible
for the family of convex-inducing classifiers with respect to weighted ¢; costs. In doing
so, I also demonstrate that the near-optimal evasion problem is generally computationally
easier than reverse-engineering a classifier. I also examine the broader family of ¢, costs
and present cases in which the convex-inducing classifiers cannot be efficiently evaded.

20

Chapter 2

Background and Notation

In this section, I establish the general notation I use throughout the remainder of this
dissertation and introduce the basic foundation of machine learning that this dissertation
builds upon. Readers generally familiar with this field can read this section cursorily to
understand my notation. For a more thorough treatment of machine learning, the reader
should refer to a text such as Hastie et al. [2003] or Vapnik [1995].

2.1 Notation and Terminology

Throughout this dissertation, I consistently use the following mathematical notation.

First-Order Logic: The notation a A b denotes the logical conjunction of a and b, a V b
denotes the logical disjunction of a and b, and —a is the logical negation of a. 1 use
the symbols V and 3 for universal and existential quantification, respectively. 1 denote
predicates as functions such as p (-) which evaluates to true if and only if it’s input exhibits
the property represented by the predicate. The special identity predicate 1[a] is true if and
only if a is true. Also, for convenience, I overload this notation for the indicator function,
which instead maps to {0, 1} rather than {false, true}.

Sets: A set, or a collection of objects, is denoted using blackboard bold characters such
as X; the set with no elements is the empty set, (). However, when referring to the entire
set or universe of a particular kind of object, I use calligraphic script characters such as
X to distinguish it from sets X C X. To group a collection of objects as a set I use
curly braces such as {a,b,c} . To specify set membership I use z € X, and to explicitly
enumerate the elements of a set I use the notation X = {x1,x9,...,2x} for a finite set and
X = {x1,29,...} for an infinite set. T use Y C X to denote that Y is a subset of X. For
finite sets, I use the notation |X| to denote the size of X. I use XU Y to denote the union
of two sets, X N'Y to denote their intersection, and X\ Y = {z € X Az ¢ Y} to denote the
set difference of elements in X but not in Y. To qualify the elements within a set, I use the
notation X = {z | A(x)} to denote a set of objects that satisfy the predicate A (-). I also
use function Ix [-] to denote the set indicator function for X; i.e., Ix [z] 2 I [z € X] (again I
overload this function to map to {0,1} for convenience).

21

Integers and reals: Common sets include the set of all integers 3 and the set of all real
numbers R. A special subset of the integers is the natural numbers X = {z € 3| z > 0}.
Similarly, special subsets of the reals are the positive reals R = {r € ® | r > 0} and the
non-negative reals R0t = {r € R | » > 0}.

Indexed Sets: To order the elements of a set, I use an inder set as a mapping to each

o . Y
element. For a finite indexable set, I use the notation {x(z)}izl so that the sequence of

N objects are indexed by {1,..., N} . More generally, a set indexed by the I is denoted
{aj(i)}i e An infinite set can be indexed by using N or R as the index set depending on its
cardinality.

Multi-dimensional sets: Sets can also be coupled to describe multi-dimensional objects
or tuples which I denote with a (lowercase) bold character such as x. An ordered pair
(r,y) € X x Y is a pair of objects x € X and y € Y. This ordered pair belongs to
the Cartesian product of the sets X and Y defined as the set of all such ordered pairs:
XxY £ {(z,9)| €X Ay € Y}. A n-tuple is an ordered list of n objects from n sets:
(x1,29,...,2Tpn) € ><?:1 X; where the generalized Cartesian product ><?:1 X; £ X; x Xy x
ox Xy ={{z,xe,) | 11 €Xy Az €Xo A L. Az, € X, } i the set of all such
n-tuples. Here, the dimension of the space or the objects in it is n and the function dim (-)
returns the dimension of an object. When each element of a n-tuple belongs to a common set
X, the generalized Cartesian product is denoted with exponential notation as X" £ ><?:1 Xi;
e.g., the Euclidean space R" is the n-dimensional real-valued space.

Vectors: For my purposes wvector is a special case of ordered n-tuple that I represent
as with a (usually lowercase) bold character such as v; unlike general tuples, vectors are
associated with an addition and a scalar multiplication operation. For an n-vector v with
elements in the set X, v € X" The i*" element (coordinate) of v is a scalar denoted

by v; € X where i € {1,2,...,n}. Special real-valued vectors include the all ones vector
1 =(1,1,---,1), the all zeros vector 0 = (0,0,---,0), and the coordinate/basis vector
e £0,...,1,...,0) which has 1 only in its d"" coordinate and 0 elsewhere.

Sequences of Objects: 1 differentiate sequenced objects from vectors by using the no-
tation z(!) to denote the ™" object in a sequence. This is to avoid confusion in referring to
a sequence of multi-dimensional data. Here x® refers to the ¢ n-dimensional vector in a

(t) tth

sequence, x,; ~ refers to the ith element of it, and z! is the power of x;.

Vector Spaces: A wector space is a set of vectors that can be added or multiplied by a
scalar; i.e., the space is closed under vector addition and scalar multiplication operations
that obey associativity, commutativity, and distributivity and has an additive and multi-
plicative identity as well as additive inverses. For example, the Euclidean space R" is a
vector space for any n € . A convex set C C X is a subset of a vector space with the
property that Vao € [0,1] z,y € C = (1 —a)x+ ay € C; i.e., all convex combinations
of any x € C and y € C are also in C. A vector space X is a normed vector space if it
is associated with a norm function ||-|| : X — R on the space such that i) there is a zero
element 0 that satisfies ||z|| =0 <= =z =0, #) for any scalar «, ||az| = |a||z|, and

22

iii) the triangle inequality holds: ||z + y|| < ||z|| + ||y||. A common family of norms are the
¢, norms defined as

(2.1)

for p € RT.

Matrices: I represent matrices using a (usually uppercase) bold character such as A. A
matrix is a multi-dimensional object with two indices. For an M x N-matrix with elements
in the set X, A € XM*N and I overload dim () to return the tuple (M, N); the number of
rows and columns of the matrix. The (i, j)th element of A is denoted by A;; € X where
i€{l,2,...,M}and j € {1,2,..., N}. The full matrix can then be expressed element-wise
using the bracket notation:

Ain A - AN
As1 Agp -+ AN
Avg Ame - Aun

As suggested by this notation, the first index of the matrix refers to its row and the second
refers to its column. Each row and each column are themselves vectors and are denoted
by A;e. and A, ; respectively. I also use the bracket notation []” to refer to the <i,j>th
element of a matrix-valued expression. Special matrices include the identity matrix I, with
1’s along its diagonal and 0’s elsewhere, and the zero matrix 0 with zero in every element.
The transpose of an M x N-matrix is an N x M-matrix denoted as AT and defined as
AT], A

i, Jrie

Vector/Matrix Multiplication: Here I consider vectors and matrices whose elements
belong to a set X with pairwise multiplication (e.g., 3, R). For the purpose of matrix
multiplication, I represent an N-vector as an N X 1 matrix for convenience. The inner
product between two vectors v and w (dim (v) = dim (w)) is a scalar denoted by v'w =
Zij\il v; - w;. The outer product between M-vector v and N-vector w is an M x N-matrix
denoted by vw " with elements [VWT]L - = v;-wj. The product between an M x N-matrix
A and an N-vector w is denoted Aw and defined as the M-vector of inner products between
the i*" row A;. and the vector w; i.e., (Aw), = AZ.W. It follows that v Aw is a scalar
defined as v Aw = Y

and an M x N-matrix A is an K x N-matrix denoted as BA whose (i, j)™ element is the
inner product between the i*" row of B and the j* column of A; i.e., [BA], ; = B/, A, ;.

v; - A; j - w;. The matriz product between an K x M-matrix B

I also consider the Hadamard (element-wise) product of vectors and matrices which I
denote with the ® operator. The Hadamard product of vectors v and w (dim (v) = dim (w))
is a vector defined as (v O w), £ v; - w;. Similarly, the Hadamard product of matrices A
and B (dim (A) = dim (B)) is a matrix defined as [A © B], ; £ Aij- Bij.

Functions: I denote a function using regular italic font; e.g., g. However, for special
named functions (such as log and sin) I use the non-italicized Roman font. A set is a

23

mapping from its domain X to its codomain Y; g : X — Y. To apply ¢ to x, I use the usual
notation ¢ (z); x € X is the argument and g (z) € Y is the value of g at z. I also use this
notation to refer to parameterized objects but it this case, I will name the object according
to the type of object. For instance, B¢ (g) £ {z | ¢ (z) < C} is a set parameterized by the
function f called the C-ball of g and so I call attention to the fact that this object is a set
by using the set notation B.

Families of functions: A family of functions is a set of functions, for which I ex-
tend the previous concept of multi-dimensional sets. Functions can be defined as tu-
ples of infinite length—instead of indexing the tuple with natural numbers, it is in-
dexed by the domain of the function; e.g., the reals. To represent the set of all such
functions, I use the generalized Cartesian product over an index set I as XieHX where
X is the codomain of the functions. For instance the set of all real-valued functions
is G = Xmegg R; id.e., every function ¢ € G is a mapping from the reals to the re-
als: g : & — R. I also consider special subsets such as the set of all continuous real-
valued functions G(eontinuows) — {4« G | continuous (g) } or the set of all convex functions
gleowvex) — Lo c G| Vte[0,1] g(te+ (1 —t)y) <tg(z)+ (1 —1t)g(y)}. Particularly, I
use the family of all classifiers in a D-dimensional space in Chapter 6. This family is the
set of functions mapping R” to the set {'~','+'} and denoted by F £ ><xE§RD {"-",'"+'}.

Optimization: Learning theory draws heavily from mathematical optimization. Opti-
mization typically is cast as finding the best object x from a set X in terms of finding a
minimizer of an objective function f : X — R:
z* € argmin [f (z)]

zeX
where argmin [-] is a mapping from the space of all objects X’ to a subset X' C X which is
the set of all objects in X' that minimize f (or equivalently maximize —f). Optimizations
can also be restricted to obey a set of constraints. When specifying an optimization with
constraints, I use the following notation:

argmingc y [f ()]
s.t. C(x)

where f is the function being optimized and C represents the constraints that need to be
satisfied. Often there will be several constraints C; that must be satisfied in the optimiza-
tion.

Probability and Statistics: I denote a probability distribution over the space X by
Py. It is a nonnegative function, which is defined on the subsets in a o-field of X (i.e., a
set of subsets of X' that is closed under complements and countable unions) and satisfies
(i) px (A) > 0, (i) px (X) = 1, and (i) for pairwise disjoint subsets AM, AP it
yields px (U; A(i)) =", A (for a more thorough treatment, refer to Billingsley [1995]). A
random variable drawn from distribution Py is denoted by X ~ Py—mnotice that I do not
use a special notation for the random variable but I make it clear in the text that they are
random. The expected value of a random variable is denoted by Ex.p, [X] = [zdpx (z).
The family of all probability distributions on X is denoted by Py; as above, this is a family
of functions.

24

2.2 Statistical Machine Learning

Machine learning encompasses a vast field of techniques that extract information from data
as well as the theory and analysis relating to these algorithms. In describing the task of
machine learning, Mitchell [1997] wrote,

A computer program is said to learn from experience E with respect to some
class of tasks T' and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E

This definition encompasses a broad class of methods. Here, I present an overview of the
terminology and mechanisms for a particular notion of learning that is often referred to
as statistical machine learning. In particular, the notion of experience is cast as data,
the task is to choose an action (or make a prediction/decision) from a set of possible
actions/decisions, and the performance metric is a loss function that measures the cost
the learner incurs for a particular prediction/action compared to the best or correct one.
Figure 2.1 illustrates the data flow for learning in this setting: data D) drawn from
the distribution Pz is used by the learning procedure H®) to produce a hypothesis (or
classifier) f. This classifier is a function that makes predictions on a new set of data Deval)
(drawn from the same distribution) and is assessed according to the loss function L. The
instance space Z is discussed in more detail below, but generally instances z are drawn from
Z according to the distribution Pz and serve to train and evaluate the classifier f. Also,
Figure 2.1(a) additionally depicts the data collection phase of learning discussed briefly
below. While measurement and feature selection are important aspects of the security of a
learning algorithm, I do not focus on them in this dissertation.

Throughout, I only consider inductive learning methods, for which learning takes the
form of generalizing from prior experiences. The method of induction requires an inductive
bias, a set of (implicit) assumptions used to create generalizations from a set of observations.
An example of an inductive bias is Ockham’s Razor—preference for the simplest hypothesis
that is consistent with the observations. Usually, the inductive bias of these methods is an
implicit bias built into the learning procedure, but I do not discuss it further.

In this dissertation, I primarily focus on techniques from statistical machine learning
that can be described as empirical risk minimization procedures. Below, I summarize these
procedures and provide notation to describe them, but at a high level, empirical risk mini-
mization procedures attempt to minimize the total loss incurred for each prediction made
about the evaluation data, D(¢*?). Fundamentally, assuming stationarity in the data, mini-
mizing the expected loss (or risk) on the training data is a surrogate to minimize loss on the
evaluation data and, under the appropriate conditions, the error on the training data can
be used to bound the generalization error [cf., Vapnik, 1995, Chapter 1]. Underlying these
results is the assumption of stationarity that the training data and evaluation data are both
drawn from the same stationary distribution Pz as depicted in Figure 2.1. Subsequently,
I examine scenarios that violate this stationarity assumption and I evaluate the impact
these violations have on the performance of learning methods. However, while I study the
impact on performance of empirical risk minimizers, these violations would have similar
effects on any learner based on stationarity, and further I verify that these violations have
less of an impact on alternative empirical risk minimizers that were designed to be robust

25

D (train)

D(eval)

Dg?val) 9E)

D(eval) T

(b) The learning framework with implicit data collection.

Figure 2.1: Diagrams depicting the flow of information through different phases of learn-
ing. (a) All major phases of the learning algorithm except for model selection. Here objects
drawn from Pz are parsed into measurements which then are used in the feature selector
F'S. It selects a feature mapping ¢ which is used to create training and evaluation datasets,
D(train) 4nd D(eval) The learning algorithm H®Y) selects a hypothesis f based on the train-
ing data and its predictions are assessed on D©€¥a) according to the loss function L. (b)
The training and prediction phases of learning with implicit data collection phases. These
learning phases are the focus of this dissertation.

26

against distributional deviations. Thus, vulnerabilities are neither unique to empirical risk
minimization procedures nor are they inherent to them, but rather guarding against these
exploits requires learners designed to be resilient against violations in their assumptions.
Of course, there is also a trade-off in this robustness and the effectiveness of the procedure,
which I highlight in each chapter.

2.2.1 Data

Real-world objects such as emails or network packets occur in a space € of all such objects.
Usually, applying a learning algorithm directly to real-world objects is difficult because the
learner cannot parse the objects’ structure or the objects may have extraneous elements
that are irrelevant to the learner’s task. Thus, these objects are transformed into a more
amenable representation by a mapping from real-world abstractions (e.g., objects or events)
into a set of representative observations—the process of measurement. In this process, each
real-world abstraction, w € (), is measured and represented to the learning algorithm as
a composite object € X. Typically there are D simple measurements of w; the itP
measurement (or feature) x; is from a space Xj;, and the composite representation (or data
point) x € X is represented as a tuple (x1,z2,...,2p). The space of all such data points is
X & X| x Xy x...x Xp. Bach feature is usually real-valued X; = R, integer-valued X; = 3,
boolean X; = {true, false}, or categorical X; = {A1, Ag, ..., Ax}. Formally, I represent the
measurement process with the measurement map £ : Q — X. It represents the learner’s
view of the world.

Data collection is the application of a measurement map & to a sequence of N objects
w® W@ @) resulting in an indexed set of N data points {x(i)}ij\il c &N, which I
refer to as a dataset and denote it by ID. The dataset represents a sequence of observations
of the environment and serve as the basis for learner’s ability to generalize past experience
to future events or observations. Various assumptions are made about the structure of
the dataset, but most commonly, the learner assumes the data points are independent
and identically distributed. All the learning algorithms I investigate assume that the data
is independently sampled from an unknown stationary distribution although with various
degrees of dependence on this assumption.

Labels In many learning problems, the learner is tasked with learning to predict the un-
observed state of the world based on its observed state. Thus, observations are partitioned
into two sets. Those that are observed are the explanatory variables (also referred to as
the input, predictor, or controlled variables) and the unobserved quantities to be predicted
comprise the response variables (also referred to as the output or outcome variables). In the
context of this dissertation and my focus on classification, I refer to the observed indepen-
dent quantities as the data point (as discussed above) and to the dependent quantities as
its label. The learner is expected to be able to predict the label for a data point having seen
past instances of data points coupled with their labels. In this form, each datum consists of
two paired components: a data point x from an input space X and a label y from a response
space). These paired objects belong to the Cartesian product: Z 2 X x). Instances are
drawn from a joint distribution Pz over this paired space.

In learning problems that include labels (e.g., supervised or semi-supervised learning),
the learner trains on a set of paired data from Z. In particular, a labeled dataset is an

27

indexed set of N instances from Z: D £ {z(l), 22 z(N)} where z() € Z is drawn from
Pz. The indexed set of just the data points is Dy = {x(l),x@), . ,a;(N)} and the indexed
set of just the labels is Dy = {y(l),y@), ces ,y(N)}. In the case that X = AP for some
numeric set A, the i*" data point can be expressed as a D-vector x(* and the data can be
expressed as a N x D matrix X defined by X;, = x()_ Similarly, when) is a scalar set
(e.g., booleans, reals), y(i) is a scalar and the labels can be expressed as a simple N-vector

y.

Feature Selection Typically, measurement is only the first phase in the overall process
of data extraction. After a dataset is collected, it is often altered in a process of feature
selection. Feature selection is a mapping ¢ of the original measurements into a space X
of features': ¢p : X — X. Unlike the data-independent measurement mapping &, the
feature selection map often is selected in a data-dependent fashion to extract aspects of
the data most relevant to the learning task. Further, measurement often is an irreversible
physical process whereas feature selection usually can be redone by reprocessing the original
measurements. In many settings, one can retroactively alter the feature selection process
by redefining the feature selection map and reapplying it to the measured data whereas
it is impossible to make retroactive measurements on the original objects unless they are
stored. However, for the purposes of this dissertation, I do not distinguish between the
feature selection and measurement phases because the attacks I study target other aspects
of learning. I merge them together into a single step and disregard X except explicitly
in reference to feature selection. I further discuss potential roles for feature selection in
security-sensitive settings in Chapter 7.2.

2.2.2 Hypothesis Space

A learning algorithm is tasked with selecting a hypothesis that best supports the data.
Here I consider the hypothesis to be a function f mapping from the data space X to
the response space Y; d.e., f : X — Y. Of course there are many such hypotheses. 1
assume f belongs to a family of all possible hypotheses F. The family of all possible
hypotheses (or hypothesis space) is most generally the set of all functions that map X onto
V. F& {f| f:& — Y}. Thehypothesis space F may be constrained by assumptions made
about the form of the hypotheses. For instance, learners often only consider the space of
generalized linear functions of the form ff b (%) £ (aTx+ b) where 0 : ® — Y is some
mapping from the reals to the response space. For instance, in the case that J) = {0, 1}, the
function 3 (z) = I [z > 0] yields the family of all halfspaces on R” parameterized by (a,b) .
In the case that) = R the identity function § (z) = = defines the family of linear functions
on RP also parameterized by (a,b) .

2.2.3 The Learner

I describe the learner as a model that captures assumptions made about the observed
data—the model provides limitations on the space of hypotheses, and perhaps provides

'In the literature, feature selection chooses a subset of the measurements (/’? C X), and feature extraction
creates composite features from the original measurements. I do not differentiate between these two processes
and will refer to both as feature selection.

28

prior knowledge or preferences on these hypotheses (e.g., a prior in a Bayesian setting or a
regularizer in a risk minimization setting). That is, the model is a set of assumptions about
the relationship between the observed data and the hypothesis space, but the model does not
specify how hypotheses are selected—that is done by the training procedure. For example,
consider a simple location estimation procedure for normally distributed data. The data
model specifies that the data points are independently drawn from a unit-variance Gaussian
distribution centered at an unknown parameter 0; i.e., X ~ N (6,1). However, both the
mean and the median are procedures for estimating the location parameter # both of which
are consistent with the model. By distinguishing the model and the training procedure one
can study different aspects of a learner’s vulnerabilities.

2.2.4 Supervised Learning

The primary focus of this work will be analyzing the task of prediction in supervised learning.
In the supervised learning framework, the observed data points are paired: D = {<x(i), y(i) >}
where (9 € X and y() € Y—a predictor (input) variable and its response (output) variable.
I assume the dataset is drawn from a joint distribution Pz over the space Z that may also
be denoted as Pxxy. The objective of prediction is to select an appropriate hypothesis;
i.e., amap f : X — Y predicting the response variable based on the observed predictor
variable. The learner selects the best hypothesis f1 from a space of all possible hypotheses
F.

Given a hypothesis space, F, the goal is to learn a classification hypothesis (classifier)
ft € F to minimize errors when predicting labels for new data, or if our model includes
a cost function over errors, to minimize the total cost of errors. The cost function assigns
a numeric cost to each combination of data instance, true label, and classifier label. The
defender chooses a procedure H™) or learning algorithm, for selecting hypotheses.

The learner is a mapping from a dataset D € ZV to a hypothesis f in the hypothesis
space: HWN) . 2N F. Tuse HN : ZN — F to denote a training algorithm; that is, a
mapping from N training examples to some hypothesis f in the hypothesis space F. If the
algorithm has a randomized element I use the notation H®) : ZN x R — F to capture that
fact that the hypothesis depends on a random element R ~ Pg.

I also consider asymptotic procedures; that is, the hypothesis generated by a training
algorithm that takes an entire distribution Pz € Pz as its input. An asymptotic procedure
is denoted by H : Pz — F. An asymptotic learning procedure is a mapping from an
entire distribution over Z to a function in the hypothesis space: H : Pz — F. The finite
sample version of the learner, HY) can be viewed as the asymptotic procedure applied to
the empirical distribution function.

Training The process I describe here is batch training—the learner trains on a training set
D(train) and is evaluated on an evaluation set D(®Va) . This setting can be generalized to an
repeated process of online training, in which the learner continually re-trains on evaluation
data after obtaining its labels (I return to this setting in Chapter 3.6). In a pure online
setting, prediction and re-training occur every time a new data point is received. In the
batch training setting (or in a single ply of online learning), the learner forms a hypothesis f7
based on the collected data D("8")the process known as training. A plethora of different

29

training procedures have been used in the supervised learning setting for (regularized)
empirical risk minimization under a wide variety of settings. I will not detail these methods
further, but instead introduce the basic setting for classification.

In a classification problem the response space is a finite set of labels each of which
correspond to some subset of input space (although these subsets need not be disjoint).
The learning task is to construct a classifier that can correctly assign these labels to new
data points based on labeled training examples from each class. In a binary classification

setting there are only two labels, '—' and '+'; i.e., the response space is Y = {'=','+'}.
Where mathematically convenient, I will use 0 and 1 in place of the labels '—' and '+'; i.e.,
I will implicitly redefine the label y to be I [y = '+'|. In binary classification, I refer to the
two classes as the negative class (y = '—') and the positive class (y = '+'). The training

set D(train) congists of labeled instances from both classes. I primarily focus on binary
classification for security applications, in which a defender attempts to separate instances
(i.e., data points), some or all of which come from a malicious attacker, into harmful
and benign classes. This setting covers many interesting security applications, such as host
and network intrusion detection, virus and worm detection, and spam filtering. In detecting
malicious activity, the positive class (label '+') indicates malicious intrusion instances while
the negative class (label '—') indicates benign or innocuous normal instances. In Chapter 5,
I also consider the anomaly detection setting, in which the training set only contains normal
instances from the negative class.

Risk Minimization The goal of the learner is to find the best hypothesis f* from the
hypothesis space F that best predicts the target concept (according to some measure of
correctness) on instances drawn according to the unknown distribution Pz. Ideally the
learner is able to distinguish f* from any other hypothesis f € F based on the observed
data D of data points drawn from Pz, but this is seldom realistic or even possible. Instead,
the learner should choose the best hypothesis in the space according to some criteria for
preferring one hypothesis over another—this is the performance measure. The measure can
be any assessment of a hypothesis; in statistical machine learning, a common procedure is
empirical Tisk minimization which is based on a loss function L : Y X Y — RO+, The learner
selects a hypothesis fT € F that minimizes the expected loss, or risk, over all hypotheses
(ff € argminge » R (Pz, f)) where the risk is given by

R(Ps,f) 2 / L(y.f (2))dpz (z,9) .

(z,y)EZ

However, this minimization is also infeasible since the distribution Pz is unknown. In-
stead, in the empirical risk minimization framework, the learner selects f to minimize the
empirical risk on the dataset D ~ Pz defined as

Bv() =5 ¥ LS @)

(z,y)eD

where N = |D|. The practice of minimizing this surrogate for the true risk is known as
empirical risk minimization [cf., Vapnik, 1995].

Regularization The learner also should restrict the space of hypotheses F. If the space
of hypotheses is too expressive, there will be a hypothesis that fits the empirical observations

30

exactly, but it may not be able to make accurate predictions about unseen instances; e.g.,
consider constructing a lookup table from observed data points to their responses. This
phenomenon is known as overfitting to the training data. One possibility to avoid overfitting
is to only consider a small or restricted space of hypotheses; e.g., the space linear functions.
Alternatively, one could allow for a large space of hypotheses, but penalize the complexity
of a hypothesis—a practice known as reqularization. Thus, the learner selects a hypothesis
fT that minimizes the modified objective

By (f) +A-p(f) (2.2)

where the function p : F — R is a measure of the complexity of a hypothesis and A € R is a
parameter that controls the trade-off between risk minimization and hypothesis complexity.

Prediction/Evaluation: Once trained on a dataset, the learned hypothesis is subse-
quently used to predict the response variables for a set of unlabeled data. I call this the
evaluation phase although it may also be referred to as the test or prediction phase. Ini-
tially, only the data point x is available to the predictor. The learned hypothesis f predicts
a value §J = f1(z) in the space) of all possible responses?. Finally, the actual label y is
revealed and the agent receives a loss L (,y) as an assessment of its performance. In the
classification setting, there are generally two types of classification mistakes: a false posi-
tive (FP) is a normal instance classified as positive and a false negative (FN) is a malicious
instance classified as negative. Selecting an appropriate trade-off between false positives
and false negatives is an application-specific task.

The performance of a learner is typically assessed on a held-out set of labeled evaluation
dataset, D) Predictions are generated by fT for each data point z(®) e Dg?val) in the
evaluation dataset and the losses incurred are aggregated into various performance measures.
In the classification setting, the typically performance measures are the false positive rate
(FPR), the fraction of negative instances classified as positive, and the false negative rate
(FNR), the fraction of positive instances classified as negatives. Often a classifier is tuned to
have a particular (empirical) false positive rate based on held-out training data (validation
dataset) and its resulting false negative rate is assessed at that FP-level.

2.2.5 Other Learning Paradigms

It is also interesting to consider cases where a classifier has more than two classes, or even
a real-valued output. Indeed, the spam filter SpamBayes, which I study in Chapter 4, uses
a third label, unsure, to allow the end-user to examine these potential spam more closely.
However, generalizing the analysis of errors to more than two classes is not straightforward,
and furthermore most systems in practice make a single fundamental distinction (for exam-
ple, regardless of the label applied by the spam filter, the end-user will ultimately decide
to treat each class as either junk messages or legitimate mail). For these reasons, and in
keeping with common practice in the literature, I limit my analysis to binary classification
and leave extensions to the multi-class or real-valued prediction as future work.

2The space of allowed predictions or actions A need not be the same as the space of allowed responses,
Y. This allows the learner to choose from a larger range of responses (hedging bets) or to restrict the learner
to some desired subset. However, unless explicitly stated, I will assume A = Y.

31

In Chapter 5, I also study an anomaly detection setting. Like binary classification,
anomaly detection consists of making one of two predictions: the data is normal ('—') or
the data is anomalous ('+'). Unlike the classification setting, training data usual only
consists of examples from the negative class. Because of this, it is common practice to
calibrate the detector to achieve a desired false positive rate on held-out training data.

There are other interesting learning paradigms to consider such as semi-supervised,
unsupervised, and reinforcement learning. However, as they do not directly impact my
dissertation, I will not discuss these frameworks. For a thorough discussion of different
learning settings refer to Hastie et al. [2003] or Mitchell [1997].

32

Chapter 3

A Framework for Secure Learning

The study of learning in adversarial environments is a relatively new discipline at the
intersection between machine learning and computer security. I introduce a framework
for qualitatively assessing the security of a machine learning system that captures a broad
set of security characteristics common to a number of related adversarial learning settings.
There has been a rich set of work in recent years that examines the security of machine
learning systems, and here, I survey prior studies of learning in adversarial environments,
attacks against learning systems and proposals for making systems secure against attacks.
I identify different classes of attacks on machine learning systems (Section 3.3) and organize
these attacks in terms of a taxonomy and a secure learning game, demonstrating that this
framework captures the salient aspects of each attack.

While many researchers have considered particular attacks on machine learning systems,
this chapter presents a comprehensive view of attacks. I organize attacks against machine
learning systems based on a taxonomy that categorizes a threat in terms of three crucial
properties of such attacks. I also present secure learning as a game between an attacker
and a defender; the taxonomy determines the structure of the game and its cost model.
Further, this taxonomy provides a basis for evaluating the resilience of the systems described
by analyzing threats against them to construct defenses. The development of defensive
learning techniques is more tentative, but I also discuss a variety of techniques that show
promise for defending against different types of attacks.

The work I present not only provides a common language for thinking and writing about
secure learning, but goes beyond that to show how the framework applies to both algorithm
design and the evaluation of real-world systems. Not only does the framework elicit common
themes in otherwise disparate domains, it has also motivated my study of practical machine
learning systems as presented in Chapters 4, 5, and 6. These foundational principals for
characterizing attacks against learning systems are an essential first step if secure machine
learning is to reach its potential as a tool for use in real systems in security-sensitive domains.

This work was first introduced in the paper Can Machine Learning be Secure? [Barreno
et al., 2006] that I wrote with my co-workers for ASIACCS’06. This work was later expanded
and used to categorize prior work in the secure learning field in our paper The Security of
Machine Learning published in Machine Learning [Barreno et al., 2010] and in Marco
Barreno’s dissertation [Barreno, 2008]. Here I use this framework as the central organizing
scheme for my dissertation, my methodology, and the prior work in this field.

33

3.1 Analyzing Phases of Learning

Attacks can occur at each of the phases of the learning process that were outlined in
Chapter 2.2. Figure 2.1(a) depicts how data flows through each phase of learning. I briefly
outline how attacks against these phases differ.

The Measuring Phase With knowledge of the measurement process, an adversary can
design malicious instances to mimic the measurements of innocuous data. After a suc-
cessful attack against the measurement mechanism, the system may require expensive re-
instrumentation or redesign to accomplish its task.

The Feature Selection Phase The feature selection process can be attacked in the
same manner as the measuring phase except countermeasures and recovery are less costly
since feature selection is a dynamic process that can be more readily adapted. Potentially,
re-training could even be automated. However, feature selection can also be attacked in
the same manner as the training phase (below) if feature selection is based on training data
that may be contaminated.

Learning Model Selection Once the learning model is known, an adversary could ex-
ploit assumptions inherent in the model. Erroneous or unreasonable modeling assumptions
about the training data may be exploited by an adversary; e.g., if a model erroneously as-
sumes linear separability in the data, the adversary could use data that can not be separated
linearly to deceive the learner or make it perform poorly. It is essential to explicitly state
and critique the modeling assumptions to identify potential vulnerabilities since changing
the model may require that the system be redesigned.

The Training Phase By understanding how the learner trains, an adversary can design
data to fool the learner into choosing a poor hypothesis. Robust learning methods are
promising techniques to counter these attacks as discussed in Section 3.5.4.3. These methods
are resilient to adversarial contamination although there are inherent trade-offs between
their robustness and performance.

The Prediction Phase Once learned, an imperfect hypothesis can be exploited by an
adversary who discovers prediction errors made by the learner. Assessing how difficult it
is to discover such errors is an interesting question; e.g., the ACRE-learning framework of
Lowd and Meek [2005b] as discussed further in Chapter 3.4.4. An interesting avenue of
future research is detecting that an adversary is exploiting these errors and retraining to
counter the attack.

To better understand these different attacks, consider a spam filter: that (7) has some
simple set of measurements of email such as hasAttachment, subjectLength, bodyLength,
etc., (ii) selects the top-ten most frequently appearing features in spam, (74) uses the naive
Bayes model, (iv) trains class frequencies by empirical counts, and (v) classifies email by
thresholding the model’s predicted class probabilities. An attack against the measurement

34

(or feature selection) phase would consist of determining the features used (for classifica-
tion) and producing spams that are indistinguishable from normal email for those features.
An attack against the learning model would entail discovering a set of spams and hams
that could not be classified correctly due to the linearity of the naive Bayes boundary.
Further, the training system (or feature selection) could be attacked by injecting spams
with misleading spurious features causing it to learn the wrong hypothesis. Finally, the
prediction phase could be attacked by systematically probing the filter to find spams that
are misclassified as ham (false negatives).

Many learning methods make a stationarity assumption: training data and evaluation
data are drawn from the same distribution. Under this assumption minimizing the risk on
the training set is a surrogate for risk on the evaluation data. However, real-world sources
of data often are not stationary and, even worse, attackers can easily break the station-
arity assumption with some control of either training or evaluation instances. Analyzing
and strengthening learning methods to withstand or mitigate violations of the stationarity
assumption is the crux of the secure learning problem.

Qualifying the vulnerable components of the learning system is only the first step to
understanding the adversary. In the next section, I outline a framework my colleagues and
I designed to qualify the adversary’s goals.

3.2 Security Analysis

Security is concerned with protecting assets from attackers. Properly analyzing the security
of a system requires identifying the security goals and a threat model for the system. A
security goal is a requirement that, if violated, results in the partial or total compromise of
an asset. A threat model is a profile of attacker who wish to harm the system, describing
their motivation and capabilities. Here I describe the security goals and threat model for
machine learning systems.

In a security-sensitive domain, classifiers can be used to make distinctions that advance
the security goals of the system. For example, a virus detection system has the goal of
reducing susceptibility to virus infection, either by detecting the virus in transit prior to
infection or by detecting an extant infection to expunge. Another example is an intrusion
detection system (IDS), which has the goal of preventing harm from malicious intrusion,
either by identifying existing intrusions for removal or by detecting malicious traffic and
preventing it from reaching its intended target'. In this section, I describe security goals
and a threat model that are specific to machine learning systems.

3.2.1 Security Goals

In a security context the classifier’s purpose is to classify malicious events and prevent them
from interfering with system operations. We split this general learning goal into two goals:

e Integrity goal: To prevent attackers from reaching system assets.

In the case of preventing intrusion, the whole system is more properly called an intrusion prevention
system (IPS). I have no need to distinguish between the two cases, so I use IDS to refer to both intrusion
detection systems and intrusion prevention systems.

35

e Availability goal: To prevent attackers from interfering with normal operation.

There is a clear connection between false negatives and violation of the integrity goal:
malicious instances that pass through the classifier can wreak havoc. Likewise, false positives
tend to violate the availability goal because the learner itself denies benign instances.

3.2.2 Threat Model

Attacker goal and incentives. In general the attacker wants to access system assets
(typically with false negatives) or deny normal operation (usually with false positives). For
example, a virus author wants viruses to pass through the filter and take control of the
protected system (a false negative). On the other hand, an unscrupulous merchant may
want sales traffic to a competitor’s web store to be blocked as intrusions (false positives).

We assume that the attacker and defender each have a cost function that assigns a cost
to each labeling for any given instance. Cost can be positive or negative; a negative cost
is a benefit. It is usually the case that low cost for the attacker parallels high cost for the
defender and vice-versa; the attacker and defender would not be adversaries if their goals
aligned. Unless otherwise stated, for ease of exposition I assume that every cost for the
defender corresponds to a similar benefit for the attacker and vice-versa. This assumption
is not essential to this framework, which extends easily to arbitrary cost functions, but not
necessary for my exposition. In this chapter, I take the defender’s point of view and use
“high-cost” to mean high positive cost for the defender.

3.2.2.1 Attacker capabilities

I assume that the attacker has knowledge of the training algorithm, and in many cases partial
or complete information about the training set, such as its distribution. For example, the
attacker may have the ability to eavesdrop on all network traffic over the period of time
in which the learner gathers training data. I examine different degrees of the attacker’s
knowledge and assess how much he gains from different sources of potential information.

In general, I assume the attacker can generate arbitrary instances; however, many set-
tings do impose significant restrictions on the instances generated by the attacker. For
example, when the learner trains on data from the attacker, sometimes it is safe to assume
that the attacker cannot choose the label for training, such as when training data is care-
fully hand labeled. As another example, an attacker may have complete control over data
packets being sent from the attack source, but routers in transit may add to or alter the
packets as well as affect their timing and arrival order.

I assume the attacker has the ablity to modify or generate data used in training and
explore scenarios both when he has this capability and when he does not. When the attacker
controls training data, an important limitation to consider is what fraction of the training
data the attacker can control and to what extent. If the attacker has arbitrary control
over 100% of the training data, it is difficult to see how the learner can learn anything
useful; however, even in such cases there are learning strategies that can make the attacker’s
task more difficult (see Section 3.6). I examine intermediate cases and explore how much
influence is required for the attacker to defeat the learning procedure.

36

Integrity Awvailability

Kearns and Li [1993], Newsome Kearns and Li [1993], Newsome

Targeted et al. [2006], Chung and Mok
et al. [2006] [2007), Nelson et al. [2008]
L Kearns and Li [1993], Newsome Kearns and Li [1993], Newsome
Indiscriminate ot al. [2006] et al. [2006], Chung and Mok
' [2007], Nelson et al. [2008]
Laploratory: Tan et al. [2002], Lowd and
Targeted Meek [2005a], Wittel and Wu | Moore et al. [2006]

[2004], Lowd and Meek [2005D]

Fogla and Lee [2006], Lowd and
Indiscriminate | Meek [2005a], Wittel and Wu | Moore et al. [2006]
2004]

Table 3.1: Related work in the taxonomy.

3.3 Framework

The framework I describe here has three primary components: a taxonomy based on the
common characteristics of attacks against learning algorithms, a high-level description of
the elements of the game played between the attacker and defender (learner), and set of
common characteristics for an attacker’s capabilities. Each of these elements help organize
and assess the threat posed by an attacker.

3.3.1 Taxonomy

A great deal of the work that has been done within secure learning is the analysis of attack
and defense scenarios for particular learning applications. My colleagues and I developed
a qualitative taxonomy of attacks against machine learning systems which we used both
to categorize others research, to find commonalities between otherwise disparate domains,
and ultimately to frame our own research. Here, I present a taxonomy categorizing attacks
against learning systems along three axes. Each of these dimensions operates independently,
so we have at least eight distinct classes of attacks on machine learning system. This
taxonomy divides threats as follows:

37

Influence

e (Causative attacks influence learning with control over training data.
e FEzxploratory attacks exploit misclassifications but do not affect training.

Security violation

o Integrity attacks compromise assets via false negatives.
o Awailability attacks cause denial of service, usually via false positives.

Specificity

e Targeted attacks focus on a particular instance.
e Indiscriminate attacks encompass a wide class of instances.

The first axis describes the capability of the attacker: whether (a) the attacker has the
ability to influence the training data that is used to construct the classifier (a Causative at-
tack) or (b) the attacker does not influence the learned classifier, but can send new instances
to the classifier and possibly observe its decisions on these carefully crafted instances (an
Ezxploratory attack).

The second axis indicates the type of security violation the attacker causes: either
(a) allowing harmful instances to slip through the filter as false negatives (an Integrity
violation); or (b) creating a denial of service event in which benign instances are incorrectly
filtered as false positives (an Awailability violation).

The third axis refers to how specific the attacker’s intention is: whether (a) the attack
is highly Targeted to degrade the classifier’s performance on one particular instance or (b)
the attack aims to cause the classifier to fail in an Indiscriminate fashion on a broad class
of instances. Each axis, especially this one, can actually be a spectrum of choices, but for
simplicity, I will categorize attacks and defenses into these groupings.

These axes define the space of attacks against learners and aid in identifying unconven-
tional threats. By qualifying where an attack lies in this space, one can begin to quantify
the adversary’s capabilities and assess the risk posed by this threat. Laskov and Kloft
[2009] have since extended these basic principles to propose a framework for quantitatively
evaluating security threats.

3.3.2 The Adversarial Learning Game

I model the task of constructing a secure learning system as a game between an attacker
and a defender—the attacker manipulates data to mis-train or evade a learning algorithm
chosen by the defender to thwart the attacker’s objective. The characteristics specified
by the taxonomy’s axes also designate some aspects of this game. The INFLUENCE axis
determines the structure of the game and the legal moves that each player can make. The
SPECIFICITY and SECURITY VIOLATION axes of the taxonomy determine the general shape of
the cost function: an Integrity attack benefits the attacker on false negatives, and therefore
focuses high cost (to the defender) on false negatives, and an Awailability attack focuses
high cost on false positives; a Targeted attack focuses high cost only on a small number of
instances, while an Indiscriminate attack spreads high cost over a broad range of instances.

I formalize the game as a series of mowes, or steps. Each move either is a strategic choice
by one of the players or is a neutral move not controlled by either player. The choices and

38

computations in a move depend on information produced by previous moves (when a game
is repeated, this includes previous iterations) and on domain-dependent constraints which I
highlight in discussing prior work. Generally, though, in an Ezploratory attack, the attacker
chooses a procedure A8 that affects the evaluation data D(€¥®) | and in a Causative attack,
the attacker also chooses a procedure A1) to manipulate the training data D(train) 1y
cither setting, the defender chooses a learning algorithm H®). This formulation gives us a
theoretical basis for analyzing the interactions between attacker and defender.

3.3.3 Characteristics of Adversarial Capabilities

In this section I introduce three essential properties for constructing a model of an attack
against a learning algorithm that refine the game played between the learner and the adver-
sary as described by the taxonomy. These properties define a set of common domain-specific
adversarial limitations that allow a security analyst to formally describe the capabilities of
the adversary.

3.3.3.1 Corruption Models

The most important aspect of the adversary is how he can alter data to mislead or evade the
classifier. As previously stated, learning against an unlimited adversary is futile. Instead,
the security analysis I propose focuses on a limited adversary, but to do so, one must model
the restrictions on the adversary and justify these restrictions for a particular domain. Here,
I outline two common models for adversarial corruption, and I describe how the adversary
is limited within each.

Data Insertion Model: The first model assumes the adversary has unlimited control
of a small fraction of the data; i.e., the adversary is restricted to only modify a limited
amount of data but can alter those data points arbitrarily. I call this an insertion model
because, in this scenario, the adversary crafts a small number of attack instances and inserts
them into the dataset for training or evaluation (or perhaps replaces existing data points).
For example, in the example of a spam filter, the adversary (spammer) can create any
arbitrary message for their attack but he is limited in the number of attack messages he
can inject; thus, the spammer’s attack on the spam filter can be analyzed in terms of how
many messages are required for the attack to be effective. For this reason, I use this model
of corruption in analyzing attacks on the SpamBayes spam filter in Chapter 4 and show
that even with a relatively small number of attack messages, the adversarial spammer can
significantly mislead the filter.

Data Alteration Model: The second corruption model instead assumes that the adver-
sary can alter any (or all) of the data points in the data set but is limited in the degree
of alteration; i.e., a alteration model. For example, to attack a detector that is monitor-
ing network traffic volumes over windows of time, the adversary can add or remove traffic
within the network but only can make a limited degree of alteration. Such an adversary
cannot insert new data since each data point corresponds to a time slice and the adversary
cannot arbitrarily control any single data point since other actors are also creating traffic in

39

the network. Here, the adversary is restricted by the total amount of alteration they make,
and so the effectiveness of his attack can be analyzed in terms of the size of alteration
required to achieve the attacker’s objective. This is the model I use for analyzing attacks
on a PCA-subspace detector for network anomaly detection in Chapter 5 and again I show
that with a relatively small degree of control, the adversary can dramatically degrade the
effectiveness of this detector using data alterations.

3.3.3.2 Class Limitations

A second limitation on attackers involves which parts of the data the adversary is allowed to
alter—the positive (malicious) class, the negative (benign) class, or both. Usually, attackers
external to the system are only able to create malicious data and so they are limited to only
manipulating positive instances. This is the model I use throughout dissertation. However,
there is also an alternative threat that insiders could attack a learning system by altering
negative instances. I do not analyze this threat in this thesis but return to the issue in the
discussion in Chapter 7.

3.3.3.3 Feature Limitations

The final type of adversarial limitation I consider are limits on how an adversary can alter
data points in terms of each feature. Features represent different aspects of the state of the
world and have various degrees of vulnerability to attack. Some features can be arbitrarily
changed by the adversary, but others may have stochastic aspects that the adversary cannot
completely control, and some features may not be alterable at all. For instance, in sending
an email, the adversary can completely control the content of the message but cannot
completely determine the routing of the message or its arrival time. Further, this adversary
has no control over meta-information that is added to the message by mail relays while the
message is en route. Providing an accurate description of the adversary’s control over the
features is essential.

3.3.4 Attacks

In the remainder of this chapter, I survey prior research, I discuss how attack and defense
strategies were developed in different domains, I reveal their common themes, and I highlight
important aspects of the secure learning game in the context of this taxonomy. The related
work discussed below is also presented in the taxonomy in Table 3.1. For an Exploratory
attack, I discuss realistic instances of the attacker’s choice for A(®va) in Sections 3.4.2
and 3.4.3. Similarly, in Sections 3.5.2 and 3.5.3, I discuss practical examples of the attacker’s
choices in the Causative game. Finally, in Section 3.7, I organize the remainder of my
dissertation within the context of this framework.

3.3.5 Defenses

The game between attacker and defender and the taxonomy also provide a foundation on
which to construct defense strategies against broad classes of attacks. I address Exzploratory

40

D(train)

<>

Aleval) Df;val) 3 IZ})
D(eval)

Dgfval)

Figure 3.1: Diagram of an Exploratory attack against a learning system (see Figure 2.1).

and Causative attacks separately. For Exploratory attacks, I discuss the defender’s choice
for an algorithm H) in Section 3.4.4 and I discuss the defender’s strategies in a Causative
setting in Section 3.5.4. Finally, in Section 3.6, I discuss the broader setting of an iterated
game.

In all cases, defenses present a trade-off: changing the algorithms to make them more
robust against (worst-case) attacks will generally make them less effective on non-adversarial
data. Analyzing this trade-off is an important part of developing defenses.

3.4 Exploratory Attacks

Based on the INFLUENCE axis of the taxonomy, the first category of attacks that I discuss are
Ezxploratory attacks, which influence only the evaluation data as indicated in Figure 3.1. The
adversary’s transformation A©¥a) alters the evaluation data either by defining a procedure
to change instances drawn from Pz or by changing Pz to an altogether different distribution
P; val) chosen by the adversary. The adversary makes these changes based on (partial)
information gleaned about the training data D("#") the learning algorithm H) and the
classifier f. Further, the adversary’s transformation may evolve as the adversary learns

more about the classifier with each additional prediction it makes.

3.4.1 The Exploratory Game

First I present the formal version of the game for Ezploratory attacks, and then explain it
in greater detail.

41

1. Defender Choose procedure HN) for selecting hypothesis
2. Attacker Choose procedure A©¥) for selecting an evaluation distribution

3. Evaluation:

e Reveal distribution Pgrain)
e Sample dataset D(train) fr.om Pg(ztrain)

Compute [«— HWN) (]D)(train))
Compute p§Val) Aleval) ((train) £
Sample dataset D(eval) from Pgeval)

Assess total cost: Z Ly (f(z),y)
<x’y>€D(cval)

The defender’s move is to choose a learning algorithm (procedure) H (N) for creating
hypotheses from datasets. Many procedures used in machine learning have the form of
Equation (2.2). For example, the defender may choose a support vector machine (SVM)
with a particular kernel, loss, regularization, and cross-validation plan. The attacker’s
move is then to choose a procedure A2 to produce a distribution on which to evaluate
the hypothesis that H) generates. (The degree of control the attacker has in generating
the dataset and the degree of information about D(2") and f that A(€¥a has access to are
setting-specific.)

After the defender and attacker have both made their choices, the game is evaluated.
A training dataset D(train) ig drawn from some fixed and possibly unknown distribution
Pgram), and training produces f = HWN) (]D)(train)). The attacker’s procedure A©€va) pro-

(eval) (train)

duces distribution Pz, which is based in general on D and f, and an evaluation

dataset D) is drawn from Péfval). Finally, the attacker and defender incur cost based
on the performance of f evaluated on D3 according to the loss function L, (+,-). Note
that, unlike in Chapter 2.2, here I allow the loss function to depend on the data point .
This generalization allows this game to account for an adversary (or learner) with instance-
dependent costs [cf., Dalvi et al., 2004].

(eval) (train)

The procedure A generally depends on D and f, but the amount of information
an attacker actually has is setting specific (in the least restrictive case the attacker knows
D(train) and f completely). The attacker may know a subset of D{rain) or the family F of
f. However, the procedure A(Va) may also involve acquiring information dynamically. For
instance, in many cases, the procedure A©¥a) can query the classifier, treating it as an oracle
that provides labels for query instances; this is one particular degree of information that
Al can have about f. Attacks that use this technique are probing attack. Probing can
reveal information about the classifier. On the other hand, with sufficient prior knowledge
about the training data and algorithm, the attacker may be able to find high-cost instances
without probing.

42

3.4.2 Exploratory Integrity Attacks

The most frequently studied attacks are Ezploratory Integrity attacks in which the adversary
attempts to passively circumvent the learning mechanism to exploit blind spots in the
learner that allow miscreant activities to go undetected. In an Fzxploratory Integrity attack,
the attacker crafts intrusions so as to evade the classifier without direct influence over
the classifier itself. Instead, attacks of this sort often attempt to systematically make the
miscreant activity appear to be normal activity to the detector or obscure the miscreant
activity’s identifying characteristics. Some FEzploratory Integrity attacks mimic statistical
properties of the normal traffic to camouflage intrusions; e.g., the attacker examines training
data and the classifier, then crafts intrusion data. In the Ezploratory game, the attacker’s
move produces malicious instances in D€ that statistically resemble normal traffic in the
training data D(train),

Example 3.1 (The Shifty Intruder)

An attacker modifies and obfuscates intrusions, such as by changing network headers and
reordering or encrypting contents. If successful, these modifications prevent the IDS from
recognizing the altered intrusions as malicious, so it allows them into the system. In the
Targeted version of this attack, the attacker has a particular intrusion to get past the filter.
In the Indiscriminate version, the attacker has no particular preference and can search for
any intrusion that succeeds, such as by modifying a large number of different exploits to
see which modifications evade the filter.

3.4.2.1 Polymorphic blending attack

Fogla and Lee [2006] introduce polymorphic blending attacks that evade intrusion detectors
using encryption techniques to make attacks statistically indistinguishable from normal
traffic. They present a formalism for reasoning about and generating polymorphic blending
attack instances to evade intrusion detection systems. The technique is fairly general and
is Indiscriminate in which intrusion packets it modifies.

Feature deletion attacks instead specifically exclude high-value identifying features used
by the detector [Globerson and Roweis, 2006]; this form of attack stresses the importance of
proper feature selection as was also demonstrated empirically by Mahoney and Chan [2003]
in their study of the behavior of intrusion detection systems on the DARPA /Lincoln Lab
dataset.

3.4.2.2 Attacking a sequence-based IDS

Tan et al. [2002] describe a mimicry attack against the stide sequence-based intrusion
detection system (IDS) proposed by Forrest et al. [1996], Warrender et al. [1999]. They
modify exploits of the passwd and traceroute programs to accomplish the same ends us-
ing different sequences of system calls: the shortest subsequence in attack traffic that does
not appear in normal traffic is longer than the IDS window size. By exploiting the finite
window size of the detector, this technique makes attack traffic indistinguishable from nor-
mal traffic for the detector. This attack is more Targeted than polymorphic blending since
it modifies particular intrusions to look like normal traffic. In subsequent work Tan et al.
[2003] characterize their attacks as part of a larger class of information hiding techniques

43

which they demonstrate can make exploits mimic either normal call sequences or the call
sequence of another less severe exploit.

Independently, Wagner and Soto [2002] have also developed mimicry attacks against a
sequence-based IDS called pH proposed by Somayaji and Forrest [2000]. Using the machin-
ery of finite automata, they construct a framework for testing whether an IDS is susceptible
to mimicry for a particular exploit. In doing so, they develop a tool for validating IDSs
on a wide-range of variants of a particular attack and suggest that similar tools should be
more broadly employed to identify the vulnerabilities of an IDS.

Overall, these mimicry attacks against sequence-based anomaly detection systems un-
derscore critical weaknesses in these systems that allow attackers to obfuscate the necessary
elements of their exploits to avoid detection by mimicking normal behaviors. Further they
highlight how an IDS may appear to perform well against a known exploit but, unless it
captures necessary elements of the intrusion, the exploit can easily be adapted to circumvent
the detector. See Section 3.4.4 for more discussion.

3.4.2.3 Good word attacks

Adding or changing words in a spam message can allow it to bypass the filter. Like the
attacks against an IDS above, these attacks all use both training data and information
about the classifier to generate instances intended to bypass the filter. They are somewhat
independent of the Targeted / Indiscriminate distinction, but the Exploratory game captures
the process used by all of these attacks.

Studying these techniques was first suggested by John Graham-Cumming. In a pre-
sentation How to Beat an Adaptive Spam Filter at the 2004 MIT Spam Conference, he
presented a Bayes vs. Bayes attack that uses a second statistical spam filter to find good
words based on feedback from the filter under attack. Several authors have further explored
evasion techniques used by spammers and demonstrated attacks against spam filters using
similar principles as those against IDSs as discussed above. Lowd and Meek [2005a] and
Wittel and Wu [2004] develop attacks against statistical spam filters that add good words,
or words the filter considers indicative of non-spam, to spam emails. This good word attack
makes spam emails appear innocuous to the filter, especially if the words are chosen to be
ones that appear often in non-spam email and rarely in spam email. Finally, obfuscation
of spam words (i.e., changing characters in the word or the spelling of the word so it no
longer recognized by the filter) is another popular technique for evading spam filters which
has been formalized by several authors (¢f. Liu and Stamm [2007] and Sculley et al. [2006]).

3.4.2.4 Cost-based Evasion

Another vein of research focuses on the costs incurred due to the adversary’s evasive actions;
i.€., instances that evade detection may be less desirable to the adversary. In using costs, this
work explicitly casts evasion as a problem where the adversary wants to evade detection but
wants to do so using high-value instances (an assumption that was implicit in the other work
discussed in this section). Dalvi et al. [2004] exploit these costs to develop a cost-sensitive
game-theoretic classification defense that is able to successfully detect optimal evasion of the
original classifier. Using this game-theoretic approach, this technique preemptively patches

44

the naive classifier’s blind spots by constructing a modified classifier designed to detect
optimally modified instances.

Subsequent game theoretic approaches to learning have extended this setting and solved
for an equilibrium for the game [Briickner and Scheffer, 2009, Kantarcioglu et al., 2009].
Further, Biggio et al. [2010] extend this game theoretic approach and propose hiding infor-
mation or randomization as additional defense mechanisms for this setting.

Cost models of the adversary also led to a theory for query-based near-optimal evasion
of classifiers first presented by Lowd and Meek [2005b] in which they cast the difficulty
of evading a classifier into a complexity problem. They give algorithms for an attacker
to reverse engineer a classifier. The attacker seeks the highest cost (lowest cost for the
attacker) instance that the classifier labels negative. In Near-Optimal Evasion of Convex-
Inducing Classifiers, I published an extension to this work with my colleagues [Nelson et al.,
2010a]. I generalized the theory of near-optimal evasion to a broader class of classifiers and
demonstrated that the problem is easier than reverse-engineering approaches; work that I
thoroughly explain in Chapter 6.

3.4.3 Exploratory Availability Attacks

In an Ezploratory Availability attack, the attacker interferes with the normal behavior of a
learning system without influence over training. This type of attack against non-learning
systems abound in the literature: almost any denial-of-service (DoS) attack falls into this
category, such as those described by Moore et al. [2006]. However, Exploratory Availability
attacks against the learning components of systems are not common and I am not aware of
any studies of them. It seems the motivation for attacks of this variety is not as compelling
as other attacks against learners.

One possible attack is described in the example below: if a learning IDS has trained on
intrusion traffic and has the policy of blocking hosts that originate intrusions, an attacker
could send intrusions that appear to originate from a legitimate host, convincing the IDS
to block that host. Another possibility is to take advantage of a computationally expen-
sive learning component: for example, spam filters that use image processing to detect
advertisements in graphical attachments can take significantly more time than text-based
filtering [Dredze et al., 2007, Wang et al., 2007]. An attacker could exploit such overhead by
sending many emails with images, causing the expensive processing to delay and perhaps
even block messages.

Example 3.2 (The Mistaken Identity)

An attacker sends intrusions that appear to come from the IP address of a legitimate
machine. The IDS, which has learned to recognize intrusions, blocks that machine. In the
Targeted version, the attacker has a particular machine to target. In the Indiscriminate
version, the attacker may select any convenient machine or may switch IP addresses among
many machines to induce greater disruption.

3.4.4 Defending against Exploratory Attacks

Ezxploratory attacks do not corrupt the training data but attempt to find vulnerabilities in
the learned hypothesis. Through control over the evaluation data, the attacker can violate

45

the assumption of stationarity. When producing the evaluation distribution, the attacker
attempts to construct an unfavorable evaluation distribution concentrating probability mass
on high-cost instances; in other words, the attacker’s procedure Aval) constructs an evalu-

ation distribution PE; ¥aD) o1 which the learner predicts poorly (thus violating stationarity);

i.e., the attacker chooses ngal) to maximize the cost computed in the last step of the

Ezxploratory game. This section examines defender strategies that make it difficult for the
attacker to construct such a distribution.

In the Ezxploratory game, the defender makes a move before observing contaminated
data; that is, here I do not consider scenarios where the defender is permitted to react to
the attack. The defender can impede the attacker’s ability to reverse engineer the classifier
by limiting access to information about the training procedure and data. With less informa-
tion, A8 has difficulty producing an unfavorable evaluation distribution. Nonetheless,
even with incomplete information, the attacker may be able to construct an unfavorable
evaluation distribution using a combination of prior knowledge and probing.

The defender’s task is to design data collection and learning techniques that make it
difficult for an attacker to reverse engineer the hypothesis. The primary task in analyzing
Ezploratory attacks is quantifying the attacker’s ability to reverse engineer the learner.

3.4.4.1 Defenses against attacks without probing

Part of a security analysis involves identifying aspects of the system that should be kept
secret. In securing a learner, the defender can limit information to make it difficult for an
attacker to conduct their attack.

Training data: Preventing the attacker from knowing the training data limits the at-
tacker’s ability to reconstruct internal states of the classifier. There is a tension between
collecting training data that fairly represents the real world instances and keeping all as-
pects of that data secret. In most situations, it is difficult to use completely secret training
data, though the attacker may have only partial information about it.

Feature selection: The defender can also harden classifiers against attacks through at-
tention to features in the feature selection and learning steps (which are both internal steps
of the defender’s hypothesis selection procedure H v)). Feature selection is the process of
choosing a feature map that transforms raw measurements into the feature space used by
the learning algorithm. In the learning step, the learning algorithm builds its model or
signature using particular features from the map’s feature space; this choice of features for
the model or signature is also sometimes referred to as feature selection, though I consider
it to be part of the learning process, after the feature map has been established. For ex-
ample, one feature map for email message bodies might transform each token to a Boolean
feature indicating its presence; another map might specify a real-valued feature indicating
the relative frequency of each word in the message compared to its frequency in natural
language; yet another map might count sequences of n characters and specify an integer
feature for each character n-gram indicating how many times it appears. In each of these
cases, a learner will construct a model or signature that uses certain features (tokens present

46

or absent; relative frequency of words present; character n-gram counts) to decide whether
an instance is benign or malicious.

Obfuscation of spam-indicating words (an attack on the feature set) is a common Tar-
geted Exploratory Integrity attack. Sculley et al. [2006] use inexact string matching in
feature selection to defeat obfuscations of words in spam emails. They choose a feature
map based on character subsequences that are robust to character addition, deletion, and
substitution.

Globerson and Roweis [2006] present a feature-based learning defense for the feature
deletion attack; an Ezploratory attack on the evaluation data D(€¥a) . In feature deletion,
features present in the training data, and perhaps highly predictive of an instance’s class, are
removed from the evaluation data by the attacker. For example, words present in training
emails may not occur in evaluation messages, and network packets in training data may
contain values for optional fields that are missing from future traffic. Globerson and Roweis
formulate a modified support vector machine classifier that is robust in its choice of features
against deletion of high-value features.

One particularly important consideration when the learner builds its model or signature
is to ensure that the learner uses features related to the intrusion itself. In their study of
the DARPA /Lincoln Laboratory intrusion dataset, Mahoney and Chan [2003] demonstrate
that spurious artifacts in training data can cause an IDS to learn to distinguish normal
from intrusion traffic based on those artifacts rather than relevant features. Ensuring that
the learner builds a model from features that describe the fundamental differences between
malicious and benign instances should mitigate the effects of mimicry attacks (Section 3.4.2)
and red herring attacks (Section 3.5.2).

Using spurious features in constructing a model or signature is especially problematic in
cases where any given intrusion attempt may cause harm only probabilistically or depending
on some internal state of the victim’s system. If the features relevant to the intrusion are
consistent for some set of instances but the actual cost of those instances varies widely, then
a learner risks attributing the variation to other nonessential features.

Hypothesis space/learning procedures: A complex hypothesis space may make it
difficult for the attacker to infer precise information about the learned hypothesis. How-
ever, hypothesis complexity must be balanced with capacity to generalize, such as through
regularization.

Wang et al. [2006] present Anagram, an anomaly detection system using n-gram models
of bytes to detect intrusions. They incorporate two techniques to defeat Faploratory attacks
that mimic normal traffic (mimicry attacks): i) they use high-order n-grams (with n typi-
cally between 3 and 7), which capture differences in intrusion traffic even when that traffic
has been crafted to mimic normal traffic on the single-byte level; and i) they randomize
feature selection by randomly choosing several (possibly overlapping) subsequences of bytes
in the packet and testing them separately, so the attack will fail unless the attacker makes
not only the whole packet but also any subsequence mimic normal traffic.

Dalvi et al. [2004] develop a cost-sensitive game-theoretic classification defense to
counter Ezxploratory Integrity attacks. In their model, the attacker can alter natural in-
stance features in A but incurs a known cost for each change. The defender can

47

measure each feature at a different known cost. Each has a known cost function over clas-
sification/true label pairs. The classifier HN) is a cost-sensitive naive Bayes learner that
classifies instances to minimize his expected cost, while the attacker modifies features to
minimize its own expected cost. Their defense constructs an adversary-aware classifier by
altering the likelihood function of the learner to anticipate the attacker’s changes. They ad-
just the likelihood that an instance is malicious by considering that the observed instance
may be the result of an attacker’s optimal transformation of another instance. This de-
fense relies on two assumptions: i) the defender’s strategy is a step ahead of the attacker’s
strategy (i.e., their game differs from ours in that the attacker’s procedure Aeval) cannot
take f into account), and i) the attacker plays optimally against the original cost-sensitive
classifier . It is worth noting that while their approach defends against optimal attacks, it
doesn’t account for non-optimal attacks. For example, if the attacker doesn’t modify any
data, the adversary-aware classifier misclassifies some instances that the original classifier
correctly classifies.

3.4.4.2 Defenses against probing attacks

In the game described above in Section 3.4.1, the attacker selects an evaluation distribu-
tion Pf;) for selecting the evaluation data D(¢"*) based on knowledge obtained from the

training data D(train) and/or the classifier f. However, the procedure Al need not se-

lect a stationary distribution Péc v fact, the attacker may incrementally change the
distribution based on the observed behavior of the classifier to each data point generated
from Péeval)—a probing or query-based adaptive attack. The ability for A2 to query
a classifier gives an attacker powerful additional attack options, which several researchers

have explored.

Analysis of reverse engineering: Lowd and Meek [2005b] observe that the attacker
need not model the classifier explicitly, but only find lowest-attacker-cost instances as in
the setting of Dalvi et al. [2004]. They formalize a notion of reverse engineering as the
adversarial classifier reverse engineering (ACRE) problem problem. Given an attacker cost
function, they analyze the complexity of finding a lowest-attacker-cost instance that the
classifier labels as negative. They assume no general knowledge of training data, though
the attacker does know the feature space and also must have one positive example and one
negative example. A classifier is ACRFE-learnable if there exists a polynomial-query algo-
rithm that finds a lowest-attacker-cost negative instance. They show that linear classifiers
are ACRE-learnable with linear attacker cost functions and some other minor restrictions.

The ACRE-learning problem provides a means of qualifying how difficult it is to use
queries to reverse engineer a classifier from a particular hypothesis class using a particular
feature space. I now suggest defense techniques that can increase the difficulty of reverse
engineering a learner.

Randomization: A randomized hypothesis may decrease the value of feedback to an
attacker. Instead of choosing a hypothesis f : X — {0,1}, I generalize to hypotheses that
predict a real value on [0, 1]. This generalized hypothesis returns a probability of classifying
xr € X as 1; i.e., a randomized classifier. By randomizing, the expected performance of the

48

hypothesis may decrease on regular data drawn from a non-adversarial distribution, but it
also may decrease the value of the queries for the attacker.

Randomization in this fashion does not reduce the information available in principle to
the attacker, but merely requires more work from the attacker for the information. It is
likely that this defense is appropriate in only a small number of scenarios.

Limiting/misleading feedback: Another potential defense is to limit the feedback given
to an attacker. For example, common techniques in the spam domain include eliminating
bounce emails, delivery notices, remote image loading, and other limits on potential feedback
channels. In most settings, it is probably impossible to remove all feedback channels;
however, limiting feedback increases work for the attacker. In some settings, it may also
be possible to mislead the attacker by sending fraudulent feedback. Actively misleading
the attacker by fabricating feedback suggests an interesting battle of information between
attacker and defender. In some scenarios the defender may be able to give the attacker no
information via feedback, and in others the defender may even be able to return feedback
that causes the attacker to come to incorrect conclusions.

3.5 Causative Attacks

The second broad category of attacks from the taxonomy are Causative attacks, which influ-
ence the training data (as well as potentially subsequently modifying the evaluation data) as
indicated in Figure 3.2. Again, the adversary’s transformation A(¢V2) alters the evaluation
data either by defining a procedure to change instances drawn from Pz or by changing Pz
to an alternative distribution Pf;val) chosen by the adversary (see Section 3.4). However,
in addition to changing evaluation data, Causative attacks also allow the adversary to alter
the training data with a second transformation A" which either transforms instances
drawn from Pz or changes Pz to an alternative distribution Pgram) during training. Of
course, the adversary can synchronize A8 and A(®val) to best achieve his desired objec-
tive, although in some Causative attacks, the adversary can only control the training data
(e.g., the attacker I describe in Chapter 4 can not control the non-spam messages sent dur-
ing evaluation). Also note that, since the game described here is batch training, an adaptive

procedure A1) js unnecessary although the distribution Pgrain) can be non-stationary.

3.5.1 The Causative Game

The game for Causative attacks is similar to the game for FExploratory attacks with an
augmented move for the attacker.

49

A(train)
Aleval) Df;val) 3 IZ})

D(eval)

Dgfval)

Figure 3.2: Diagram of a Causative attack against a learning system (see Figure 2.1).

1. Defender Choose procedure HN) for selecting hypothesis
2. Attacker Choose procedures Altrain) anq A(eval) £ selecting distributions
3. Evaluation:

Compute Pgrain) — Altrain) (p_)

Sample dataset D2 from pgrain)

Compute f — HWN) (]D)(train))

Compute Péoval) « Aleval) (]D)(train)’ f)

(eval)

Sample dataset D3 from P

Assess total cost: Z Ly (f (%) ,y)
(z,y)eDleval)

This game is very similar to the Ezploratory game, but the attacker can choose A(train)
to affect the training data D(tr2i") The attacker may have various types of influence over
the data, ranging from arbitrary control over some fraction of instances to a small biasing
influence on some aspect of data production; details depend on the setting. Again, the loss
function Ly (-, -) allows for instance-dependent costs.

Control over data used for training opens up new strategies to the attacker. Cost is
based on the interaction of f and D8, In the Ezploratory game the attacker chooses
D(va) while the defender controls f; in the Causative game the attacker also has influence
on f. With this influence, the attacker can proactively cause the learner to produce bad
classifiers.

Contamination in PAC learning: Kearns and Li [1993] extend Valiant’s probably ap-

50

proximately correct (PAC) learning framework (cf., Valiant [1984, 1985]) to prove bounds
for maliciously chosen errors in the training data. In PAC learning, an algorithm succeeds
if it can, with probability at least 1 — 4, learn a hypothesis that has at most probability € of
making an incorrect prediction on an example drawn from the same distribution. Kearns
and Li examine the case where an attacker has arbitrary control over some fraction (3 of the
training examples (this specifies the form that A(train) takes in our Causative game). They
prove that in general the attacker can prevent the learner from succeeding if 5 > €/(1 +¢),
and for some classes of learners they show this bound is tight.

This work provides an interesting and useful bound on the ability to succeed at PAC-
learning. The analysis broadly concerns both Integrity and Awvailability attacks as well as
both Targeted and Indiscriminate variants. However, not all learning systems fall into the
PAC-learning model.

3.5.2 Causative Integrity Attacks

In these attacks, the adversary actively attempts to corrupt the learning mechanism so
that miscreant activities can take place that would be otherwise disallowed. In a Causative
Integrity attack, the attacker uses control over training to cause intrusions to slip past the
classifier as false negatives.

Example 3.3 (The Intrusion Foretold)

An attacker wants the defender’s IDS not to flag a novel virus. The defender trains period-
ically on network traffic, so the attacker sends non-intrusion traffic that is carefully chosen
to look like the virus and mis-train the learner to fail to block it. This example would be
Targeted if the attacker already has a particular virus executable to send and needs to cause
the learner to miss that particular instance. It would be Indiscriminate, on the other hand,
if the attacker has a certain payload but could use any of a large number of existing exploit
mechanisms to transmit the payload, in which case the attack need only fool the learner on
any one of the malicious executables.

Red herring attack: Newsome et al. [2006] present Causative Integrity and Causative
Awailability attacks against Polygraph [Newsome et al., 2005], a polymorphic virus detector
that learns virus signatures using both a conjunction learner and a naive-Bayes-like learner.
Their red herring attacks against conjunction learners exploit certain weaknesses not present
in other learning algorithms. The attack introduces spurious features along with their
payload; once the learner constructs a signature, the spurious features are discarded to
avoid subsequent detection. The idea is that the attacker transforms Pz into Pgram) and
Pg va) to introduce spurious features into all malicious instances that the defender uses for

training. The malicious instances produced by PE; Val), however, lack the spurious features
and therefore bypass the filter, which erroneously generalized that the spurious features
were necessary elements of the malicious behavior. Venkataraman et al. [2008] also present
lower bounds for learning worm signatures based on red herring attacks.

Antidote: I also collaborated with colleagues at Berkeley and Intel Labs to explore the
vulnerability of network-wide traffic anomaly detectors based on principal component anal-
ysis (PCA) as introduced by Lakhina et al. [2004b]. Our work examines how an attacker

51

can exploit the sensitivity of PCA to form Causative Integrity attacks [Rubinstein et al.,
2009a]. In anticipation of a DoS attack, the attacker systematically injects traffic to increase
variance along the links of their target flow and mislead the anomaly detection system. I
also studied how the projection pursuit-based robust PCA algorithm of Croux et al. [2007]
significantly reduces the impact of poisoning. I detail this work in Chapter 5.

3.5.3 Causative Availability Attacks

This less expected attack attempts to corrupt the learning system to cause normal traffic to
significantly be misclassified to disrupt normal system operation. In a Causative Availability
attack, the attacker uses control over training instances to interfere with operation of the
system, such as by blocking legitimate traffic.

Example 3.4 (The Rogue IDS)

An attacker uses an intrusion detection system (IDS) to disrupt operations on the defender’s
network. The attacker wants traffic to be blocked so the destination doesn’t receive it. The
attacker generates attack traffic similar to benign traffic when the defender is collecting
training data to train the IDS. When the learner re-trains on the attack data, the IDS will
start to filter away benign instances as if they were intrusions. This attack could be Targeted
at a particular protocol or destination. On the other hand, it might be Indiscriminate and
attempt to block a significant portion of all legitimate traffic.

Allergy attack: Chung and Mok [2006, 2007] present allergy attacks against the Auto-
graph worm signature generation system [Kim and Karp, 2004]. Autograph operates in
two phases. First, it identifies infected nodes based on behavioral patterns, in particular
scanning behavior. Second, it observes traffic from the identified nodes and infers blocking
rules based on observed patterns. Chung and Mok describe an attack that targets traffic
to a particular resource. In the first phase, an attack node convinces Autograph that it
is infected by scanning the network. In the second phase, the attack node sends crafted
packets mimicking targeted traffic, causing Autograph to learn rules that block legitimate
access and create a denial of service event.

In the context of the Causative game, the attacker’s choice of provides the traffic
for both phases of Autograph’s learning. When Autograph produces a hypothesis f that
depends on the carefully crafted traffic from the attacker, it will block access to legitimate

traffic from Pée val) that shares patterns with the malicious traffic.

(train)
P

Correlated outlier attack: Newsome et al. [2006] also suggest a correlated outlier at-
tack against the Polygraph virus detector [Newsome et al., 2005]. This attack targets the
naive-Bayes-like component of the detector by adding spurious features to positive training
instances, causing the filter to block benign traffic with those features. As with the red
herring attacks, these correlated outlier attacks fit neatly into the Causative game; this
time Pgram) includes spurious features in malicious instances, causing H () to produce a f
that classifies many benign instances as malicious.

Attacking SpamBayes: In the spam filtering domain I also explored Causative Avail-
ability attacks against the SpamBayes statistical spam classifier [Nelson et al., 2008, 2009].

52

In these attacks, I demonstrated that by sending emails containing entire dictionaries of
tokens, the attacker can cause a significant fraction of normal email to be misclassified as
spam with relatively little contamination (an Indiscriminate attack). Similarly, if an at-
tacker can anticipate a particular target message, the attacker can also poison the learner
to misclassify the target as spam (a Targeted attack). I also explored a principled defense
to counter these dictionary attacks: the reject on negative impact (RONI) defense. 1 discuss
this work in detail in Chapter 4.

3.5.4 Defending against Causative Attacks

Most defenses presented in the literature of secure learning combat Ezploratory Integrity
attacks (as discussed above) while relatively few defenses have been presented to cope with
Causative attacks. In Causative attacks, the attacker has a degree of control over not
only the evaluation distribution but also the training distribution. Therefore the learning
procedures we consider must be resilient against contaminated training data, as well as to
the evaluation considerations discussed in Section 3.4.4.

Two general strategies for defense are to remove malicious data from the training set
and to harden the learning algorithm against malicious training data. I first present one
method for the former and then describe two approaches to the latter that appear in the
literature. The foundations of these approaches primarily lie in adapting game-theoretic
techniques to analyze and design resilient learning algorithms.

3.5.4.1 The RONI defense

Insidious Causative attacks make learning inherently more difficult. In many circumstances,
data sanitization may be the only realistic mechanism to achieve acceptable performance.
For example, Nelson et al. [2009] introduce such a sanitization technique called the Reject On
Negative Impact (RONI) defense, a technique that measures the empirical effect of adding
each training instance and discards instances that have a substantial negative impact on
classification accuracy. To determine whether a candidate training instance is malicious or
not, the defender trains a classifier on a base training set, then adds the candidate instance to
the training set and trains a second classifier. The defender applies both classifiers to a quiz
set of instances with known labels and measures the difference in accuracy between the two
classifiers. If adding the candidate instance to the training set causes the resulting classifier
to produce substantially more classification errors, the defender permanently removes the
instance as detrimental in its effect. I refine and explore the RONI defense experimentally
in Section 4.5.5.

3.5.4.2 Learning with Contaminated Data

Several approaches to learning under adversarial contamination have been studied in the
literature. The effect of adversarial contamination on the learner’s performance were incor-
porated into some existing learning frameworks. Kearns and Li [1993] extended Valiant’s
probably approzimately correct (PAC) model to allow for adversarial noise within the train-
ing data and bounded the amount of contamination a learner could tolerate. Separately,
the field of robust statistics [see Huber, 1981, Hampel et al., 1986, Maronna et al., 2006]

93

formalized adversarial contamination with a worst-case contamination model from which
analysts derived criteria for designing and comparing the robustness of statistical procedures
to adversarial noise. Recent research incorporated these robustness criteria with more tra-
ditional learning domains [Christmann and Steinwart, 2004, Wagner, 2004], but generally
these techniques have not been widely incorporated within machine learning. T discuss this
further in the next section.

Another model of adversarial learning is based on the online expert learning setting
[Cesa-Bianchi and Lugosi, 2006]. Rather than designing learners to be robust against ad-
versarial contamination, techniques here focus on regret minimization to construct aggre-
gate learners that adapt to adversarial conditions. The objective of regret minimization
techniques is to dynamically aggregate the decisions of several experts based on their past
performance so that the composite learner does well with respect to the best expert in
hindsight; a set of techniques that I further discuss in Section 3.6.

3.5.4.3 Robustness

The field of robust statistics explores procedures that limit the impact of a small fraction
of deviant (adversarial) training data. In the setting of robust statistics, it is assumed
that the bulk of the data is generated from a known well-behaved model, but a fraction of
the data comes from an unknown model—to bound the effect of this unknown source it is
assumed to be adversarial. There are a number of measures of a procedure’s robustness:
the breakdown point is the level of contamination required for the attacker to arbitrarily
manipulate the procedure and the influence function measures the impact of contamination
on the procedure. Robustness measures can be used to assess the susceptibility of an existing
system and to suggest alternatives that reduce or eliminate the vulnerability. Ideally one
would like to use a procedure with a high breakdown point and a bounded influence function.
These measures can be used to compare candidate procedures and to design procedures H ()
that are optimally robust against adversarial contamination of the training data. Here I
summarize these concepts, but for a full treatment of these topics, refer to the books by
Huber [1981], Hampel et al. [1986], and Maronna et al. [2006].

To motivate applications of robust statistics for adversarial learning, recall the tra-
ditional learning framework presented in Chapter 2.2. Particularly, in Chapter 2.2.4, 1
discussed selecting a hypothesis that minimizes the empirical risk. Unfortunately, in an
adversarial setting, assumptions of the learning model may be violated. Ideally, one would
hope that minor deviations from the modeling assumptions would not have a large impact
on the optimal procedures that were derived under those assumptions. Unfortunately, this
is not the case—small (adversarial) deviations from the assumptions can have a profound
impact on some learning procedures. As stated by Tukey [1960]:

A tacit hope in ignoring deviations from ideal models was that they would not
matter; that statistical procedures which were optimal under the strict model
would still be approximately optimal under the approximate model. Unfor-
tunately, it turned out that this hope was often drastically wrong; even mild
deviations often have much larger effects than were anticipated by most statis-
ticians.

These flaws can also be exploited by an adversary to mistrain a learning algorithm even

o4

when limited to a small amount of contamination. To avoid such vulnerabilities, one must
augment the notion of optimality to include some form of robustness to the assumptions of
the model; as defined by Huber [1981], “robustness signifies insensitivity to small deviations
from the assumptions.” There is, however, a fundamental trade-off between the efficiency
of a procedure and its robustness—this issue is addressed in the field of robust statistics.

The model used to assess the distributional robustness of a statistical estimator H is
known as the gross-error model, which is a mixture of the known distribution Fz and some
unknown distribution Gz parameterized by some the fraction of contamination e,

P (Fz) 2 {(1—-€)Fz+e¢Gz | Hz € Pz}

where Pz is the collection of all probability distributions on Z. This concept of a con-
tamination neighborhood provides for the minimaz approach to robustness by considering
a worst-case distribution within the gross-error model. Historically, the minimax approach
yielded a robust class of estimators known as Huber estimators. Further it introduced the
concept of a breakdown point e*—intuitively, the smallest level of contamination where the
minimax asymptotic bias of an estimator becomes infinite.

An alternative approach is to consider the (scaled) change in the estimator H due to an
infinitesimal fraction of contamination. Again, consider the gross-error models and define
a derivative in the direction of an infinitesimal contamination localized at a single point z.
By analyzing the scaled change in the estimator due to the contamination, one can assess
the influence that adding contamination at point z has on the estimator. This gives rise to
a functional known as the influence function and is defined as

IF (25 H, Fz) & lim L= OFz +ed.) = H (Fz)

e—0 €

where A, is the distribution which has all its probability mass at the point z. This functional
was derived for a wide variety of estimators and gives rise to several (infinitesimal) notions
of robustness. The most prominent of these measures is the gross-error sensitivity defined
as
’7*(H3FZ) éSUp‘IF(Z,H,FzM :
z

Intuitively, a finite gross error sensitivity gives a notion of robustness to infinitesimal point
contamination.

Recent research has highlighted the importance of robust procedures in security and
learning tasks. Wagner [2004] observes that common sensor net aggregation procedures,
such as computing a mean, are not robust to adversarial point contamination, and he
identifies robust alternatives as a defense against malignant or failed sensors. Christmann
and Steinwart [2004] study robustness for a general family of learning methods. Their
results suggest that certain commonly used loss functions, along with proper regularization,
lead to robust procedures with a bounded influence function. These results suggest such
procedures have desirable properties for secure learning, which I return to in Chapter 7.1.

3.6 Repeated Learning Games

In Section 3.4.1 and 3.5.1, the learning games are one-shot games, in which the defender
and attacker minimize their cost when each move happens only once. Here, I generalize

95

these games to an iterated game, in which the players make a series of moves to minimize
their total accumulated cost. I assume players have access to all information from previous
iterations of the game.

In this setting, the defender can dynamically adapt to the adversary in an online fash-
ion engendering a repeated game between the adversary and defender. The attacker has
unspecified (potentially arbitrary) control of the training data, but instead of attempting
to learn on this arbitrarily corrupted data, the online learner forms a composite prediction
based on the advice of a set of M experts (e.g., a set of classifiers each designed to provide
different security properties). The game now takes place over K repetitions of the iterated
Causative game. At each iteration, the experts provide advice (predictions) to the defender
who weighs the advice of the experts to produce a composite prediction; e.g., the aggre-
gate prediction could be a weighted majority of the experts’ predictions [Littlestone and
Warmuth, 1994]. Further, at the end of the iteration, the defender learns the true labels
for the predictions it made and it reweighs each expert based on the expert’s prediction
performance. No assumption is made about how the expert’s form their advice or about
their performance; in fact, their advice may be adversarial and may incur arbitrary loss.
Rather than evaluating the cost of the composite predictions directly, one instead com-
pares the cost incurred by the composite classifier relative to the cost of the best expert in
hindsight; i.e., we compute the regret that the composite classifier has for not heeding the
advice of the best expert in hindsight. By using algorithms with small regret, the compos-
ite predictor performs comparably to the best expert without knowing which one will be
best, a priori. Thus, by designing strategies that minimize regret, online learning provides
an elegant mechanism to combine several predictors, each designed to address the security
problem in a different way, into a single predictor that adapts relative to the performance of
its constituents. As a result, the attacker must design attacks that are uniformly successful
on the set of predictors rather than just on a single predictor because the composite learner
can perform almost as well as the best without knowing ahead of time which expert will be
best. A full description of this setting and several regret minimization learning algorithms
appear in Cesa-Bianchi and Lugosi [2006].

In this setting, the learner forms a prediction from the M expert predictions and adapts
its predictor h(%) based on their performance during K repetitions. At each step k of the
game, the defender receives a prediction gj(k’m) from the m™ expert? and make a composite
prediction §¥) via h(¥). After the defender’s prediction is made, the true label y(¥) is revealed
and the defender evaluates the instantaneous regret for each expert; i.e., the difference in
the loss for the composite prediction and the loss for the m™ expert’s prediction. More
formally, the &' round of the expert-based prediction game is>:

2An expert’s advice may be based on the data but the defender makes no assumption about how experts
form their advice.

3Here, I again assume that costs are symmetric for the defender and adversary and are represented by
loss function. Further, as in Chapter 2.2.4 I simplify the game to use ignore the surrogate loss function used
in place of 0/1 losses. Finally, this game is also easily generalized to the case where several instances/labels
are generated in each round of the game.

56

1. Defender Update function A% : M — y
2. Attacker Choose distribution P(Zk)
3. Evaluation:

e Sample an instance (:L’(k),y(k)) ~ Pék)

Compute expert advice {Q(k’m)}fle; e.g., gkm = f(m) (x(k))
Predict g)(k) — (k) (g(k,l)jg(kﬂ)’ o ’Q(k,M))

Compute instantaneous regret: r#m) = [, (g)(k), y(k)) —L (g)(k’m),y(k))
for each expert m=1... M

This game has a slightly different structure from the games I presented in Section 3.4.1
and 3.5.1—here the defender chooses one strategy at the beginning of the game and then in
each iteration updates the function A% according to that strategy. Based only on the past
performance of each expert (i.e. the regrets observed over the previous k — 1 iterations of
the game), the defender chooses an online strategy for updating h*) at the k™ step of the
game to minimize regret [cf., Cesa-Bianchi and Lugosi, 2006]. The attacker, however, may
select a new strategy at each iteration and can control the subsequent predictions made by
each expert based on the defender’s choice for h(*).

Finally, at the end of the game, the defender is assessed in terms of the regret for the
predictions it made. At each iteration the defender would like to choose the best advice
given at that iteration, but that is not possible since, in the worst-case, the adversary is
assumed to choose the advice given by each expert. Instead, the overall performance of
the defender is compared to the overall performance of each expert through the defender’s
cumulative regret; i.e., the cumulative difference between the loss of the composite learner
and the loss of the m™ expert. The cumulative regret R("™ for the composite predictor
with respect to the m! expert and the worst-case regret over all experts are thus defined
as

K
R £ %" plkm) R* £ max R (3.1)
k=1

If R* is small (relative to K), then the defender’s aggregation algorithm has performed
almost as well the best expert without knowing which expert would be best. Further, as
follows from the Equation (3.1) and the definition of instantaneous regret, the average regret
is simply the difference of the risk of A(%) and the risk of (™). Thus, if the average worst-case
regret is small (i.e., approaches 0 as K goes to infinity) and the best expert has small risk,
the predictor h¥) also has a small risk. This motivates the study of regret minimization
procedures. A substantial body of research has explored strategies for choosing A% to
minimize regret in several settings.

Online expert-based prediction splits risk minimization into two subproblems: () min-
imizing the risk of each expert, and (77) minimizing the average regret; that is, as if we had
known the best predictor f*) before the game started and had simply used its prediction
at every step of the game. The other defenses we have discussed approach the first prob-
lem. Regret minimization techniques address the second problem: the defender chooses a
strategy for updating h*) to minimize regret based only on the expert’s past performance.

o7

For certain variants of the game, there exist composite predictors whose regret is o (K)—
that is, the average regret approaches 0 as K increases. Thus, the composite learner can
perform almost as well as the best expert without knowing ahead of time which expert is
best. Hence, if there is any single predictor that predicted well, the combined predictor
will predict nearly as well. This effectively allows the defender to use several strategies
simultaneously and forces the attacker to design attacks that do well against them all.

Importantly, regret minimization techniques allow the defender to adapt to an adversary
and force the adversary to design attack strategies that succeed against an entire set of
experts (each of which can have its own security design considerations and may use different
feature sets, different hypothesis spaces, or different training procedures). Thus, one can
incorporate several classifiers with desirable security properties into a composite approach.
Moreover, if a successful attack is discovered, one can design a new expert against the
identified vulnerability and add it to our set of experts to patch the exploit. This makes
online prediction well-suited to the ever-changing attack landscape.

3.7 Dissertation Organization

I partition the remainder of my dissertation work based on the framework presented in this
chapter. I divide my research into two parts. The first explores Causative attacks while
the second examines Fxploratory attacks. Incidentally, the first part is primarily concerned
with analyzing the security of real systems while the second part deals with theoretical
questions of classifier evasion.

The next part of my dissertation investigates Causative attacks against two practical
learning systems. In the first, I analyze a spam filter called SpamBayes and show that it
is particularly vulnerable to Awailability attacks through adversarial contamination of the
training data. The adversary’s contamination model uses data insertion to inject a number
of attack spam messages into the filter’s training set. I propose a data sanitization defense
that is able to successfully detect and remove attack messages based on the estimated
damage the message causes. The second learning system I analyze is a network anomaly
detection system based on a subspace estimation technique (principal component analysis).
For this system, the adversary instead undertakes Integrity attacks and the adversary uses
a data alteration model to contaminate the training set. Also, to combat attacks against
these detectors, I propose an alternate learning approach based on a technique from robust
statistics.

In the final part of my dissertation, I examine an important theoretical model for Ez-
ploratory attacks against a classifier. To find a classifier’s blind spots the adversary sys-
tematically issues membership queries and uses the classifier’s responses to glean important
structural information about its boundary. I generalize this framework, first presented by
Lowd and Meek [2005b], to a more diverse family of classifiers called the convex-inducing
classifiers and to a broader set of ¢, distances. Further, in investigating the near-optimal
evasion problem, I suggest a number of novel research directions to pursue within the Ez-
ploratory attack setting.

o8

Part 1

Protecting against False Positives
and False Negatives in Causative
Attacks:

Two Case Studies of Availability
and Integrity Attacks

99

60

Chapter 4

Availability Attack Case Study:
SpamBayes

Adversaries can launch Causative Availability attacks that result in classifiers that have
unacceptably high false positive rates; i.e., that misclassify benign input as potential attacks
causing undue interruption in legitimate activity. This chapter provides a case study of one
such attack on the SpamBayes spam detection system. I show that cleverly-crafted attack
messages—pernicious spam email that an uninformed human user would likely identify and
label as spam—can exploit SpamBayes’ learning algorithm causing the resulting classifier to
have an unreasonably high false positive rate'. I also show effective defenses against these
attacks and discuss the trade-offs required to prevent them.

I examine several attacks against the SpamBayes spam filter each of which embodies
a particular insight into the vulnerability of the underlying learning technique. In doing
so, I more broadly demonstrate attacks that could impact any system that uses a similar
learning algorithm. Most notably, the attacks I present in this chapter target the learning
algorithm used by the spam filter SpamBayes (spambayes.sourceforge.net), but several other
filters also use the same underlying learning algorithm; this includes BogoFilter (bogofil-
ter.sourceforge.net), the spam filter in Mozilla’s Thunderbird email client (mozilla.org), and
the machine learning component of SpamAssassin (spamassassin.apache.org). The primary
difference between the learning elements of these three filters is in their tokenization meth-
ods; i.e., the learning algorithm is fundamentally identical but each filter uses a different
set of features. I demonstrate the vulnerability of the underlying algorithm for SpamBayes
because it uses a pure machine learning method, it is familiar to the academic commu-
nity Meyer and Whateley [2004], and it is popular with over 700,000 downloads. Although
here I only analyze SpamBayes, the fact that these other systems use the same learning
algorithm suggests that other filters are also vulnerable to similar attacks. However, the
overall effectiveness of the attacks would depend on how each of the other filters incor-
porated the learned classifier into the final filtering decision. For instance, filters such as
SpamAssassin, only use learning as one of several components of a broader filtering engine
(the others are hand-crafted non-adapting rules), so attacks against it would degrade the
performance of the filter but perhaps the overall impact would be lessened or muted en-

!Chapter 5 also demonstrates Causative attacks that instead result in classifiers with an unreasonably
high false negative rate—these are Integrity attacks.

61

tirely. In principle, though, it should be possible to replicate these results in these other
filters. Finally, beyond spam filtering, I highlight the vulnerabilities in SpamBayes’ learner
because these same attacks could also be employed against similar learning algorithms in
other domains. While the feasibility of these attacks, the attacker’s motivation, or the con-
tamination mechanism present in this chapter may not be appropriate in other domains, it
is nonetheless interesting to understand the vulnerability so that it can be similarly assessed
for other applications.

I organize my approach to studying the vulnerability of SpamBayes’ learning algorithm
based on the framework discussed in Chapter 3. Primarily, I investigated Causative Avail-
ability attacks on the filter as this type of attack was an interesting new facet to attacks
against a learner that could actually be deployed in real-world settings. The adversary I
studied has an additive contamination capability (i.e., the adversary has exclusive control
on some subset of the user’s training data) but limited to only altering the positive (spam)
class; I deemed this contamination model to be the most appropriate for a crafty spammer.
Novel contributions of my research include a set of successful principled attacks against
SpamBayes, an empirical study validating the effectiveness of the attacks in a realistic set-
ting, and a principled defense that empirically succeeds against several of the attacks. I
finally discuss the implications of the attack and defense strategies and the role that attacker
information plays in the effectiveness of their attacks.

Below, I discuss the background of the training model (see Section 4.1); I present three
new attacks on SpamBayes (see Section 4.3); I give experimental results (see Section 4.5);
and I present a defense against these attacks together with further experimental results (see
Section 4.4). This work appeared in the First USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET) [Nelson et al., 2008] and was subsequently published as a
book chapter in Machine Learning in Cyber Trust: Security, Privacy, Reliability [Nelson
et al., 2009].

4.1 The SpamBayes Spam Filter

SpamBayes is a content-based statistical spam filter that classifies email using token counts
in a model proposed by Robinson [2003] as inspired by Graham [2002]. Meyer and Whateley
[2004] describe the system in detail. SpamBayes computes a spam score for each token in
the training corpus based on its occurrence in spam and non-spam emails; this score is
motivated as a smoothed estimate of the posterior probability that an email containing
that token is spam. The filter computes a message’s overall spam score based on the
assumption that the token scores are independent and then it applies Fisher’s method [see
Fisher, 1948] for combining significance tests to determine whether the email’s tokens are
sufficiently indicative of one class or the other. The message score is compared against two
thresholds to select the label spam, ham (i.e., non-spam), or unsure. In the remainder of
this section, I detail the statistical method SpamBayes uses to estimate and aggregate token
scores.

62

4.1.1 SpamBayes’ Training Algorithm

SpamBayes is a content-based spam filter that classifies messages based on the tokens (in-
cluding header tokens) observed in an email. The spam classification model used by Spam-
Bayes was designed by Robinson [2003] and Meyer and Whateley [2004], based on ideas
by Graham [2002] together with Fisher’s method for combining independent significance
tests [Fisher, 1948]. Intuitively, SpamBayes learns how strongly each token indicates ham
or spam by counting the number of each type of email that token appears in. When clas-
sifying a new email, SpamBayes considers all the message’s tokens as evidence of whether
the message is spam or ham and uses a statistical test to decide whether they indicate one
label or the other with sufficient confidence; if not, SpamBayes returns unsure.

SpamBayes tokenizes each email X based on words, URL components, header elements,
and other character sequences that appear in X. Each is treated as a unique token of the
email independent of their order within the message and for convenience, I place an ordering
on the tokens to name a unique token as the i*" token (among the entire alphabet of tokens).
Further, SpamBayes only records whether or not a token occurs in the message, not how
many times it occurs. Email X is represented as a binary (potentially infinite length) vector
X where

- {1 . if the i*" token occurs in X
i =

0, otherwise

This message vector representation records which tokens occur in the message independent
of their order or multiplicity.

The training data used by SpamBayes is a dataset of message vector (representing each
training message) and label pairs: D(train) — {<x(1),y(1)> , <x(2),y(2)>,...,<X(N),y(N)>}
where x® € {0,1}” and y® € {ham, spam}. As in Section 2.2.1, this training data can
be represented as a training matrix X = [x(l) x(2) x(N)]T e {0, 1}NXD along with
its label vector y = [y(l) y@ y(N)] € {ham, spam}N. Using the training matrix, the
token-counting statistics used by SpamBayes can be expressed as

n® 2 XTy
n” & XT(1-y)
n L n(S) + l’l(h)

which are vectors containing the cumulative token counts for each token in all, spam, and
ham messages respectively. I also define N®) £ yTy as the total number of training spam
messages and N £ (1 —y)" (1 —y) as the total number of training ham messages (and,
of course, N = N 4 N()),

From these count statistics, SpamBayes computes a spam score for the i*" token by
estimating the posterior Pr (X is spam|z; = 1). First, the likelihoods Pr (z; = 1| X is spam)
and Pr (z; = 1|X is ham) for observing the i*" token in a spam/ham message are estimated

using the maximum likelihood estimators yielding the likelihood vectors LZ(-S) = N%s) -n®
h)y _ 1
and LE = Nm